相關習題
 0  234879  234887  234893  234897  234903  234905  234909  234915  234917  234923  234929  234933  234935  234939  234945  234947  234953  234957  234959  234963  234965  234969  234971  234973  234974  234975  234977  234978  234979  234981  234983  234987  234989  234993  234995  234999  235005  235007  235013  235017  235019  235023  235029  235035  235037  235043  235047  235049  235055  235059  235065  235073  266669 

科目: 來源: 題型:選擇題

17.若直線y=x+t與橢圓$\frac{x^2}{4}+{y^2}=1$相交于A,B兩點,當|t|變化時,|AB|的最大值為( 。
A.2B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{{4\sqrt{10}}}{5}$D.$\frac{{8\sqrt{10}}}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.長方體ABCD-A1B1C1D1相鄰的三個面的對角線長分別是1,2,3,則該長方外接球的面積是( 。
A.B.14πC.28πD.36π

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知函數(shù)$f(x)=sin(2x+ϕ)+cos(2x+ϕ)(-\frac{π}{2}<ϕ<\frac{π}{2})$的圖象經(jīng)過點$(π,\frac{{\sqrt{2}}}{2})$,則f(x)的最小正周期為π,ϕ的值為$-\frac{π}{12}$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,設其左右焦點為F1,F(xiàn)2,過F2的直線l交橢圓于A,B兩點,三角形F1AB的周長為8.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設O為坐標原點,若OA⊥OB,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}(a>.b>0)$,直線$y=\sqrt{2}x-3\sqrt{2}$與以原點為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1,F(xiàn)2為橢圓C的左右焦點,P為橢圓C上異于頂點的任意一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2,則橢圓C的標準方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+1和函數(shù)g(x)=$\frac{bx-1}{{a}^{2}x+2b}$,
(1)若f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不等的實根x1,x2(x2<x2),則
①試判斷函數(shù)f(x)在區(qū)間(-1,1)上是否具有單調(diào)性,并說明理由;
②若方程f(x)=0的兩實根為x3,x4(x3<x4)求使x1<x2<x3<x4成立的a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.在整數(shù)集Z中,被5所除得余數(shù)為k的所有整數(shù)組成一個“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4;給出四個結(jié)論:
(1)2015∈[0];(2)-3∈[3];(3)Z=[0]∪[1]∪[2]∪[3]∪[4];(4)“整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.
其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)y=(x-4)|x|在[a,4]上的最小值為-4,則實數(shù)a的取值范圍是( 。
A.$[{2-2\sqrt{2},2}]$B.(-∞,2]C.$[{2-2\sqrt{2},2})$D.$({2-2\sqrt{2},2})$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.二次函數(shù)f(x)=x2-2mx+3,在區(qū)間[-1,2]上不單調(diào),則實數(shù)m的取值范圍是( 。
A.(-1,2)B.[-1,+∞)C.(-∞,2]D.[-1,2]

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-$\frac{1}{2}$kx2-2x+2,f′(x)是的導函數(shù).
(1)求f′(x)的單調(diào)區(qū)間;
(2)若k=1,證明:當x>0時,f(x)>0.

查看答案和解析>>

同步練習冊答案