相關習題
 0  235852  235860  235866  235870  235876  235878  235882  235888  235890  235896  235902  235906  235908  235912  235918  235920  235926  235930  235932  235936  235938  235942  235944  235946  235947  235948  235950  235951  235952  235954  235956  235960  235962  235966  235968  235972  235978  235980  235986  235990  235992  235996  236002  236008  236010  236016  236020  236022  236028  236032  236038  236046  266669 

科目: 來源: 題型:選擇題

12.如果直線y=kx-1與雙曲線x2-y2=4的右支有兩個公共點,求k的取值范圍( 。
A.1<k<$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$C.-$\frac{\sqrt{5}}{2}$<k<-1D.-$\frac{\sqrt{5}}{2}$<k<1

查看答案和解析>>

科目: 來源: 題型:解答題

11.根據下列條件,求雙曲線的標準方程.
(1)與已知雙曲線x2-4y2=4有共同漸近線且經過點(2,2);
(2)漸近線方程為y=±$\frac{1}{2}$x,焦距為10;
(3)經過兩點P(-3,2$\sqrt{7}$)和Q(-6$\sqrt{2}$,-7);
(4)雙曲線中心在原點,焦點在坐標軸上,離心率為$\sqrt{2}$,且過點(4,-$\sqrt{10}$).

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知tanα=$\frac{1}{2}$,求
(1)$\frac{sinα+2cosα}{2sinα-3cosα}$;
(2)sin2α+2sinαcosα.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知函數y=f(x2-2x)在區(qū)間(-∞,-1]上單調遞增,在區(qū)間[1,3]上是減函數,則y=f(x)( 。
A.在區(qū)間(-∞,3]上遞增B.在區(qū)間(-∞,-1]上遞增
C.在區(qū)間(-∞,3]上遞減D.在區(qū)間(-∞,-1]上遞減

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:y=x+10,雙曲線的一個焦點在直線l上,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.y2-x2=50D.x2-y2=10

查看答案和解析>>

科目: 來源: 題型:填空題

7.$\underset{lim}{n→∞}$($\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$+…+$\frac{1}{1+2+3+…+n}$)=1.

查看答案和解析>>

科目: 來源: 題型:解答題

6.P為雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點,F1、F2為左、右焦點,若∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

5.秦九韶,中國古代數學家,對中國數學乃至世界數學的發(fā)展做出了杰出貢獻.世界各國從小學、中學到大學的數學課程,幾乎都接觸到他的定理、定律和解題原則.美國著名科學史家薩頓(G•Sarton,1884-1956)說過,秦九韶是“他那個民族,他那個時代,并且確實也是所有時代最偉大的數學家之一“.他所創(chuàng)立的秦九韶算法,直到今天,仍是多項式求值比較先進的算法.尤其是他本人做夢都沒想到的是可以用計算機算法編寫程序,減少CPU運算時間.請你解決下面一題:已知一個5次多項式為f(x)=4x5+2x4+3.5x3-2.6x2+1.7x+0.8,用秦九韶算法求這個多項式當x=5時的值為14131.8.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓的方程為$\frac{{x}^{2}}{9}$+y2=1,過左焦點作傾斜角為$\frac{π}{6}$的直線交橢圓于A,B兩點.
(1)求弦AB的長.
(2)求左焦點F1到AB中點M的長.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知函數f(x)=$\left\{\begin{array}{l}{sinx,x≥0}\\{-{x}^{2}-1,x<0}\end{array}\right.$,若f(x)≤kx,則k的范圍為( 。
A.[1,2]B.[$\frac{1}{2}$,2]C.[$\frac{1}{2}$,1]D.(-∞,1)

查看答案和解析>>

同步練習冊答案