相關(guān)習(xí)題
 0  236090  236098  236104  236108  236114  236116  236120  236126  236128  236134  236140  236144  236146  236150  236156  236158  236164  236168  236170  236174  236176  236180  236182  236184  236185  236186  236188  236189  236190  236192  236194  236198  236200  236204  236206  236210  236216  236218  236224  236228  236230  236234  236240  236246  236248  236254  236258  236260  236266  236270  236276  236284  266669 

科目: 來(lái)源: 題型:選擇題

16.已知命題p:“等軸雙曲線的漸近線互相垂直”;命題q:“直線l與拋物線C只有一個(gè)公共點(diǎn),則l與C相切”,下列結(jié)論正確的是( 。
A.p∧q為真B.p∨q為假C.p∧(¬p)為真D.(¬p)∨q為真

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-2x,x<0}\end{array}\right.$,若函數(shù)g(x)=f(f(x))+k在x∈R上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(e,+∞)B.(1,e)C.(-∞,-e)D.(-e,-1)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸長(zhǎng)為2,離心率為$\frac{\sqrt{3}}{2}$.
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)已知任一橢圓在其上面的點(diǎn)(x0,y0)處的切線方程均可寫為$\frac{x{x}_{0}}{{a}^{2}}$+$\frac{y{y}_{0}}{^{2}}$=1,設(shè)P是圓x2+y2=16上任意一點(diǎn),過(guò)P作橢圓C的切線PA,PB,切點(diǎn)分別為A,B,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知f(x)=ax2-$\sqrt{2}$(a>0),且f($\sqrt{2}$)=2,求a的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的動(dòng)直線交拋物線C于A、B兩點(diǎn),則原點(diǎn)P到直線l的距離最大時(shí),弦AB的長(zhǎng)度為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.若直線y=k(x-1)與橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1總有公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(0,1)B.[1,+∞)C.(1,2)∪(2,+∞)D.[1,2)∪(2,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.已知f(x)為奇函數(shù),當(dāng)x>0,f(x)=x(1+x),那么x<0,f(x)等于(  )
A.-x(1-x)B.x(1-x)C.-x(1+x)D.x(1+x)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.若$cos(\frac{π}{2}-a)=-\frac{1}{3}$,則cos(π-2a)=( 。
A.-$\frac{4\sqrt{2}}{9}$B.-$\frac{7}{9}$C.$\frac{7}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.已知集合A={1,2,3,4},B={0,2,4,6},則A∩B等于(  )
A.{0,1,2,3,4,6}B.{1,3}C.{2,4}D.{0,6}

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x+$\frac{1}{|x|}$.
(1)求解不等式f(x)≥2x;
(2)$\frac{1}{{x}^{2}}$+x2+2mf(x)≥0在x∈[1,2]上恒成立,求m的取值范圍;
(3)設(shè)函數(shù)g(x)=x2+(-3+c)x+c2,若方程g(f(x))=0有6個(gè)實(shí)根,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案