相關(guān)習(xí)題
 0  236453  236461  236467  236471  236477  236479  236483  236489  236491  236497  236503  236507  236509  236513  236519  236521  236527  236531  236533  236537  236539  236543  236545  236547  236548  236549  236551  236552  236553  236555  236557  236561  236563  236567  236569  236573  236579  236581  236587  236591  236593  236597  236603  236609  236611  236617  236621  236623  236629  236633  236639  236647  266669 

科目: 來(lái)源: 題型:解答題

11.若在定義域內(nèi)存在實(shí)數(shù)x0使得f(x0+1)=f(x0)+f(1)成立則稱函數(shù)f(x)有“溜點(diǎn)x0
(1)若函數(shù)$f(x)={(\frac{1}{2})^x}+m{x^2}$在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)=lg($\frac{a}{{x}^{2}+1}$)在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.函數(shù)f(x)的定義域?yàn)镽,并滿足以下條件:①對(duì)任意x∈R,有f(x)>0;②對(duì)任意x,y∈R,有f(xy)=[f(x)]y;③$f(\frac{1}{3})>1$.
(1)求證:f(x)在R上是單調(diào)增函數(shù);
(2)若f(4x+a•2x+1-a2+2)≥1對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.化簡(jiǎn)求值.
(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$
(2)(lg2)2+lg20×lg5+log92•log43.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.已知m∈R,函數(shù)f(x)=$\left\{\begin{array}{l}|2x+1|,x<1\\ ln(x-1),x>1\end{array}$,g(x)=x2-2x+2m2-1,若函數(shù)y=f(g(x))-m有6個(gè)零點(diǎn)則實(shí)數(shù)m的取值范圍是$(0,\frac{3}{4})$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=ln(2x+a2-4)的定義域、值域都為R,則a取值的集合為{-2,2}.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

6.若$\overrightarrow a$=(λ,2),$\overrightarrow b$=(3,4),且$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,則λ的取值范圍是$λ>-\frac{8}{3}且λ≠\frac{3}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.設(shè)點(diǎn)M(x0,2-x0),設(shè)在圓O:x2+y2=1上存在點(diǎn)N,使得∠OMN=30°,則實(shí)數(shù)x0的取值范圍為[0,2].

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.若tanα=2,則$\frac{sinα+2cosα}{2sinα-cosα}$+cosαsinα等于( 。
A.$\frac{26}{15}$B.$\frac{13}{15}$C.-$\frac{26}{15}$D.-$\frac{13}{15}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a、b、c,如果a2=b(b+c).那么A-2B=0.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.設(shè)全集U=R,集合$A=\{x\left|{y=\sqrt{x}}\right.\},B=\{y\left|{y={{log}_2}(x-\frac{1}{2}),x∈[1,\frac{9}{2}]}\right.\}$,則(∁UA)∩B=(  )
A.B.[-1,0)C.$[1,\frac{9}{2}]$D.[0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案