相關(guān)習(xí)題
 0  245734  245742  245748  245752  245758  245760  245764  245770  245772  245778  245784  245788  245790  245794  245800  245802  245808  245812  245814  245818  245820  245824  245826  245828  245829  245830  245832  245833  245834  245836  245838  245842  245844  245848  245850  245854  245860  245862  245868  245872  245874  245878  245884  245890  245892  245898  245902  245904  245910  245914  245920  245928  266669 

科目: 來源: 題型:選擇題

10.直線y=kx與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)交于A、B兩點,F(xiàn)為橢圓C的左焦點,且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,若∠ABF∈(0,$\frac{π}{12}$],則橢圓C的離心率的取值范圍是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{6}}{3}$]C.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{6}}{3}$,1)

查看答案和解析>>

科目: 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=ex-ax-1,
(Ⅰ)若函數(shù)f(x)在R上單調(diào)遞增,求a的取值范圍;
(Ⅱ)當(dāng)a>0時,設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤0;
(Ⅲ)求證:對任意的正整數(shù)n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知集合A={x|$\frac{2x+1}{x+2}$<1,x∈R},函數(shù)f(x)=|mx+1|(m∈R),函數(shù)g(x)=x2+ax+b(a,b∈R)的值域為[0,+∞).
(1)若不等式f(x)≤3的解集為A,求m的值;
(2)在(1)的條件下,若|f(x)-2f($\frac{x}{2}$)|≤k恒成立,求k的取值范圍;
(3)若關(guān)于x的不等式g(x)<c的解集為(m,m+6),求實數(shù)c的值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=$\frac{1}{x}$-x+alnx(a∈R)(e=2.71828…是一個無理數(shù)).
(1)若函數(shù)f(x)在定義域上不單調(diào),求a的取值范圍;
(2)設(shè)函數(shù)f(x)的兩個極值點分別為x1和x2,記過點A(x1,f(x1)),B(x2,f(x2))的直線斜率為k,若k≤$\frac{2e}{e^2-1}$•a-2恒成立,求a的取值集合.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點分別為A1,A2,且|A1A2|=4,P為橢圓上異于A1,A2的點,PA1和PA2的斜率之積為-$\frac{3}{4}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為橢圓中心,M,N是橢圓上異于頂點的兩個動點,求△MON面積的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.對橢圓有結(jié)論一:橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F(c,0),過點P($\frac{a^2}{c}$,0)的直線l交橢圓于M,N兩點,點M關(guān)于x軸的對稱點為M′,則直線M′N過點F.類比該結(jié)論,對雙曲線有結(jié)論二,根據(jù)結(jié)論二知道:雙曲線C′:$\frac{x^2}{3}$-y2=1的右焦點為F,過點P($\frac{3}{2}$,0)的直線與雙曲線C′右支有兩交點M,N,若點N的坐標(biāo)是(3,$\sqrt{2}$),則在直線NF與雙曲線的另一個交點坐標(biāo)是$(\frac{9}{5},-\frac{{\sqrt{2}}}{5})$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m.則實數(shù)m的取值范圍為( 。
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

3.以兩點A(-3,-1)和B(5,5)為直徑端點的圓的方程是(  )
A.(x-1)2+(y-2)2=25B.(x+1)2+(y+2)2=25C.(x+1)2+(y+2)2=100D.(x-1)2+(y-2)2=100

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且∠F1PF2=$\frac{π}{3}$,橢圓的離心率為e1,雙曲線的離心率e2,則$\frac{1}{e_1^2}+\frac{3}{e_2^2}$=4.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左、右頂點分別為A1,A2,點P在C上且直線PA2的斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是( 。
A.$[{\frac{1}{2},1}]$B.$[{\frac{3}{4},1}]$C.$[{\frac{1}{2},\frac{3}{4}}]$D.$[{\frac{3}{8},\frac{3}{4}}]$

查看答案和解析>>

同步練習(xí)冊答案