相關(guān)習(xí)題
 0  251619  251627  251633  251637  251643  251645  251649  251655  251657  251663  251669  251673  251675  251679  251685  251687  251693  251697  251699  251703  251705  251709  251711  251713  251714  251715  251717  251718  251719  251721  251723  251727  251729  251733  251735  251739  251745  251747  251753  251757  251759  251763  251769  251775  251777  251783  251787  251789  251795  251799  251805  251813  266669 

科目: 來源: 題型:解答題

8.已知圓C過點(diǎn)(0,2)且與直線x+$\sqrt{3}$y-4=0切于點(diǎn)$(1,\sqrt{3})$.
(1)求圓C的方程;
(2)若P,Q為圓C與y軸的交點(diǎn)(P在Q上),過點(diǎn)T(0,4)的直線l交圓C于M,N兩點(diǎn),若M,N都不與P,Q重合時(shí),是否存在定直線m,使得直線PN與QM的交點(diǎn)G恒在直線m上.若存在,求出直線m的方程;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,已知正三棱柱ABC-A1B1C1,D是AC的中點(diǎn),∠α=30°,∠BDA1=90°,AB=a,求棱柱的側(cè)面積.

查看答案和解析>>

科目: 來源: 題型:填空題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,三邊a,b,c成等差數(shù)列,且B=$\frac{π}{6}$,則|cos A-cos C|的值為$\sqrt{1+\sqrt{3}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知P(2$\sqrt{2}$,$\sqrt{5}$)在雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1上,其左、右焦點(diǎn)分別為F1、F2,三角形PF1F2的內(nèi)切圓切x軸于點(diǎn)M,則$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$的值為(  )
A.2$\sqrt{2}$-1B.2$\sqrt{2}$+1C.2$\sqrt{2}$-2D.2$\sqrt{2}$-$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=(a-1)x2+2ax+3為偶函數(shù),那么f(x)在(-5,-2)上是(  )
A.單調(diào)遞增函數(shù)B.單調(diào)遞減函數(shù)C.先減后增函數(shù)D.先增后減函數(shù)

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設(shè)曲線y=$\frac{1}{x}$在點(diǎn)(1,1)處的切線與直線ax+y+1=0垂直,則a=( 。
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知正實(shí)數(shù)a,b,c,若a2+b2+4c2=1,則ab+2ac+3$\sqrt{2}$bc的最大值為( 。
A.1B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x2-4|x|+3,
(1)畫出函數(shù)f(x)的圖象并寫出單調(diào)遞增區(qū)間;
(2)若方程f(x)=2a有四個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知f(x)是定義在(-∞,0)∪(0,+∞)的奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=x2+2x,那么當(dāng)x∈(0,+∞)時(shí),f(x)=-x2+2x.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,射線OA、OB分別與x軸成45°角和30°角,過點(diǎn)P(1,0)作直線AB分別與OA、OB交于A、B.
(Ⅰ)當(dāng)AB的中點(diǎn)為P時(shí),求直線AB的方程;
(Ⅱ)當(dāng)AB的中點(diǎn)在直線y=$\frac{1}{2}$x上時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案