科目: 來源: 題型:
【題目】關于函數(shù),有下列結論:
①的最大值為;
②的最小正周期是;
③在區(qū)間上是減函數(shù);
④直線是函數(shù)的一條對稱軸方程.
其中正確結論的序號是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了傳承經典,促進學生課外閱讀,某校從高中年級和初中年級各隨機抽取100名學生進行有關對中國四大名著常識了解的競賽.圖1和圖2分別是高中年級和初中年級參加競賽的學生成績按照分組,得到的頻率分布直方圖.
(1)分別計算參加這次知識競賽的兩個學段的學生的平均成績;
(2)規(guī)定競賽成績達到為優(yōu)秀,經統(tǒng)計初中年級有3名男同學,2名女同學達到優(yōu)秀,現(xiàn)從上述5人中任選兩人參加復試,求選中的2人恰好都為女生的概率;
(3)完成下列的列聯(lián)表,并回答是否有99%的把握認為“兩個學段的學生對四大名著的了解有差異”?
附:
臨界值表:
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場銷售某件商品的經驗表明,該商品每日的銷量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中,為常數(shù)。已知銷售價格為5元/千克時,每日可售出該商品11千克。
(Ⅰ)求實數(shù)的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大。
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為矩形,直線平面,,,,點在棱上.
(1)求證:;
(2)若是的中點,求異面直線與所成角的余弦值;
(3)若,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某市園林局準備綠化一塊直徑為的半圓空地,以外的地方種草,的內接正方形為一水池,其余的地方種花,若為定值),,設的面積為,正方形的面積為
(1)用表示;
(2)當為何值時,取得最大值,并求出此最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知圓錐曲線(為參數(shù))和定點,、是此圓錐曲線的左、右焦點,以原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求直線的直角坐標方程;
(2)經過點且與直線垂直的直線交此圓錐曲線于、兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校男女籃球隊各有10名隊員,現(xiàn)將這20名隊員的身高繪制成莖葉圖(單位:).男隊員身高在以上定義為“高個子”,女隊員身高在以上定義為“高個子”,其他隊員定義為“非高個子”,按照“高個子”和“非高個子”用分層抽樣的方法共抽取5名隊員.
(1)從這5名隊員中隨機選出2名隊員,求這2名隊員中有“高個子”的概率;
(2)求這5名隊員中,恰好男女“高個子”各1名隊員的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,圓與軸交于兩點,過點的圓的切線為是圓上異于的一點,垂直于軸,垂足為,是的中點,延長分別交于.
(1)若點,求以為直徑的圓的方程,并判斷是否在圓上;
(2)當在圓上運動時,證明:直線恒與圓相切.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某小區(qū)擬在空地上建一個占地面積為2400平方米的矩形休閑廣場,按照設計要求,休閑廣場中間有兩個完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設計矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com