相關(guān)習(xí)題
 0  256718  256726  256732  256736  256742  256744  256748  256754  256756  256762  256768  256772  256774  256778  256784  256786  256792  256796  256798  256802  256804  256808  256810  256812  256813  256814  256816  256817  256818  256820  256822  256826  256828  256832  256834  256838  256844  256846  256852  256856  256858  256862  256868  256874  256876  256882  256886  256888  256894  256898  256904  256912  266669 

科目: 來(lái)源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過(guò)定點(diǎn)P(2,3),傾斜角為.

(Ⅰ)寫出直線l的參數(shù)方程和圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>,對(duì)任意都有,且當(dāng)時(shí), .

(1)試判斷的單調(diào)性,并證明;

(2),

①求的值;

②求實(shí)數(shù)的取值范圍,使得方程有負(fù)實(shí)數(shù)根.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖已知直四棱柱ABCDA1B1C1D1的底面是菱形,且∠DAB60°ADAA1,F為棱BB1的中點(diǎn)M為線段AC1的中點(diǎn).

(1)求證直線MF∥平面ABCD;

(2)求證平面AFC1⊥平面ACC1A1.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).

(Ⅰ)求橢圓的離心率;

(Ⅱ)試判斷是否存在這樣的,使得, , 在同一個(gè)圓上,并說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖頻率分布直方圖:

(Ⅰ)求直方圖中的值;

(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,試計(jì)算數(shù)據(jù)落在上的概率.

參考數(shù)據(jù):若,則,

(Ⅲ)設(shè)生產(chǎn)成本為,質(zhì)量指標(biāo)為,生產(chǎn)成本與質(zhì)量指標(biāo)之間滿足函數(shù)關(guān)系假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試計(jì)算生產(chǎn)該食品的平均成本.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,圓錐的軸截面為等腰直角△SABQ為底面圓周上一點(diǎn).

(1)QB的中點(diǎn)為C,OHSC,求證OH⊥平面SBQ;

(2)如果∠AOQ=60°,QB=2,求此圓錐的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,三棱柱中,各棱長(zhǎng)均相等, , 分別為棱, , 的中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)若三棱柱為直棱柱,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,M、N、P分別是正方體ABCDA1B1C1D1的棱AB、BCDD1上的點(diǎn).

(1),求證無(wú)論點(diǎn)PDD1上如何移動(dòng)總有BPMN;

(2)DD1上是否存在這樣的點(diǎn)P,使得平面APC1⊥平面ACC1證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若有相同的單調(diào)區(qū)間,求的取值范圍;

(Ⅱ)令),若在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(i)求的取值范圍;

(ii)設(shè)兩個(gè)極值點(diǎn)分別為, ,證明:

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,與直角坐標(biāo)系取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)化曲線的方程為普通方程,并說(shuō)明它們分別表示什么曲線;

(2)設(shè)曲線軸的一個(gè)交點(diǎn)的坐標(biāo)為,經(jīng)過(guò)點(diǎn)作斜率為1的直線,直線交曲線兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案