科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點(diǎn).
(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在四棱錐中, 平面是的中點(diǎn), 是上的點(diǎn)且為邊上的高.
(1)證明: 平面;
(2)若,求三棱錐的體積;
(3)在線段上是否存在這樣一點(diǎn),使得平面?若存在,說出點(diǎn)的位置.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,正方體的棱長為1, 分別是棱的中點(diǎn),過直線的平面分別與棱交于,設(shè), ,給出以下四個命題:
①
②當(dāng)且僅當(dāng)時,四邊形的面積最小;
③四邊形周長, ,則是奇函數(shù);
④四棱錐的體積為常函數(shù);
其中正確命題的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐中, 平面, , , , 為線段上一點(diǎn), , 為的中點(diǎn).
(1)證明: 平面;
(2)求異面直線與所成角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)是圓心為的圓上的動點(diǎn),點(diǎn), 為坐標(biāo)原點(diǎn),線段的垂直平分線交于點(diǎn).
(1)求動點(diǎn)的軌跡的方程;
(2)過原點(diǎn)作直線交(1)中的軌跡于點(diǎn),點(diǎn)在軌跡上,且,點(diǎn)滿足,試求四邊形的面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為實數(shù), 為自然對數(shù)的底數(shù)),曲線在處的切線與直線平行.
(1)求實數(shù)的值,并判斷函數(shù)在區(qū)間內(nèi)的零點(diǎn)個數(shù);
(2)證明:當(dāng)時, .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正三棱錐,已知,
(1)求此三棱錐內(nèi)切球的半徑.
(2)若是側(cè)面上一點(diǎn),試在面上過點(diǎn)畫一條與棱垂直的線段,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sinxcosx將 f(x)的圖象向右平移 (0<φ<π) 個單位,得到y(tǒng)=g(x)圖象且g(x)的一條對稱軸是直線x= .
(1)求φ;
(2)求函數(shù)y=g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】團(tuán)購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費(fèi)方式,不少商家同時加入多家團(tuán)購網(wǎng).現(xiàn)恰有三個團(tuán)購網(wǎng)站在市開展了團(tuán)購業(yè)務(wù), 市某調(diào)查公司為調(diào)查這三家團(tuán)購網(wǎng)站在本市的開展情況,從本市已加入了團(tuán)購網(wǎng)站的商家中隨機(jī)地抽取了50家進(jìn)行調(diào)查,他們加入這三家團(tuán)購網(wǎng)站的情況如下圖所示.
(1)從所調(diào)查的50家商家中任選兩家,求他們加入團(tuán)購網(wǎng)站的數(shù)量不相等的概率;
(2)從所調(diào)查的50家商家中任取兩家,用表示這兩家商家參加的團(tuán)購網(wǎng)站數(shù)量之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(3)將頻率視為概率,現(xiàn)從市隨機(jī)抽取3家已加入團(tuán)購網(wǎng)站的商家,記其中恰好加入了兩個團(tuán)購網(wǎng)站的商家數(shù)為,試求事件“”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com