相關(guān)習(xí)題
 0  257253  257261  257267  257271  257277  257279  257283  257289  257291  257297  257303  257307  257309  257313  257319  257321  257327  257331  257333  257337  257339  257343  257345  257347  257348  257349  257351  257352  257353  257355  257357  257361  257363  257367  257369  257373  257379  257381  257387  257391  257393  257397  257403  257409  257411  257417  257421  257423  257429  257433  257439  257447  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程,并 C的焦點(diǎn)F的直角坐標(biāo);

2)已知點(diǎn),若直線C相交于A,B兩點(diǎn),且,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙兩人玩轉(zhuǎn)盤游戲,該游戲規(guī)則是這樣的:一個(gè)質(zhì)地均勻的標(biāo)有12等分?jǐn)?shù)字格的轉(zhuǎn)盤(如圖),甲、乙兩人各轉(zhuǎn)轉(zhuǎn)盤一次,轉(zhuǎn)盤停止時(shí)指針?biāo)傅臄?shù)字為該人的得分.(假設(shè)指針不能指向分界線)現(xiàn)甲先轉(zhuǎn),乙后轉(zhuǎn),求下列事件發(fā)生的概率

(1)甲得分超過7分的概率.
(2)甲得7分,且乙得10分的概率
(3)甲得5分且獲勝的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)是(﹣∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x<0時(shí),函數(shù)的部分圖象如圖所示,則不等式xf(x)<0的解集是(

A.(﹣2,﹣1)∪(1,2)
B.(﹣2,﹣1)∪(0,1)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)

查看答案和解析>>

科目: 來源: 題型:

【題目】小王創(chuàng)建了一個(gè)由他和甲、乙、丙共4人組成的微信群,并向該群發(fā)紅包,每次發(fā)紅包的個(gè)數(shù)為1個(gè)(小王自己不搶),假設(shè)甲、乙、丙3人每次搶得紅包的概率相同.
(Ⅰ)若小王發(fā)2次紅包,求甲恰有1次搶得紅包的概率;
(Ⅱ)若小王發(fā)3次紅包,其中第1,2次,每次發(fā)5元的紅包,第3次發(fā)10元的紅包,記乙搶得所有紅包的錢數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣2ax+b(a>0)在區(qū)間[﹣1,4]上有最大值10和最小值1.設(shè)g(x)=
(1)求a、b的值;
(2)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(3)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

1)求不等式的解集;

2)若,求證: .

查看答案和解析>>

科目: 來源: 題型:

【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,甲:

為了評價(jià)兩種模型的擬合效果,完成以下任務(wù):

(1)(。┩瓿上卤恚ㄓ(jì)算結(jié)果精確到0.1):

)分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較,的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價(jià)格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊書的成本)

查看答案和解析>>

科目: 來源: 題型:

【題目】某市醫(yī)療保險(xiǎn)實(shí)行定點(diǎn)醫(yī)療制度,按照“就近就醫(yī)、方便管理”的原則,參加保險(xiǎn)人員可自主選擇四家醫(yī)療保險(xiǎn)定點(diǎn)醫(yī)院和一家社區(qū)醫(yī)院作為本人就診的醫(yī)療機(jī)構(gòu).若甲、乙、丙、丁4名參加保險(xiǎn)人員所在地區(qū)附近有A,B,C三家社區(qū)醫(yī)院,并且他們的選擇是相互獨(dú)立的.
(Ⅰ)求甲、乙兩人都選擇A社區(qū)醫(yī)院的概率;
(Ⅱ)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;
(Ⅲ)設(shè)4名參加保險(xiǎn)人員中選擇A社區(qū)醫(yī)院的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時(shí)間r(小時(shí))之間近似滿足如圖所示的曲線

(1)寫出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于 微克時(shí),治療有效,求服藥一次后治療有效的時(shí)間是多長?

查看答案和解析>>

同步練習(xí)冊答案