科目: 來源: 題型:
【題目】如圖,港口在港口的正東120海里處,小島在港口的北偏東的方向,且在港口北偏西的方向上,一艘科學(xué)考察船從港口出發(fā),沿北偏東的方向以20海里/小時的速度駛離港口.一艘給養(yǎng)快艇從港口以60海里/小時的速度駛向小島,在島轉(zhuǎn)運(yùn)補(bǔ)給物資后以相同的航速送往科考船.已知兩船同時出發(fā),補(bǔ)給裝船時間為1小時.
(1)求給養(yǎng)快艇從港口到小島的航行時間;
(2)給養(yǎng)快艇駛離港口后,最少經(jīng)過多少小時能和科考船相遇?
查看答案和解析>>
科目: 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進(jìn)價為20元,每個的加工費(fèi)為n元,銷售單價為x元.根據(jù)市場調(diào)查,須有,,,同時日銷售量m(單位:個)與成正比.當(dāng)每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;
(2)當(dāng)每個工藝品的加工費(fèi)用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)與的圖象在上有且只有一個公共點(diǎn))
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三個點(diǎn)A(2,1),B(3,2),D(-1,4).
(1)求證:⊥;
(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對角線所夾銳角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(I)若,求實(shí)數(shù)的取值范圍;
(II)當(dāng)時,討論方程在上的解的個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是______(填序號).
①有兩個面互相平行,其余各面都是四邊形的幾何體是棱柱;
②有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱;
③有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;
④用一個平面去截棱錐,棱錐底面和截面之間那部分的幾何體是棱臺;
⑤存在一個四棱錐,其四個側(cè)面都是直角三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,,底面為直角梯形,,分別為中點(diǎn),且,.
(1)平面;
(2)若為線段上一點(diǎn),且平面,求的值;
(3)求二面角的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生
男生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表二:女生
女生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)求,的值;
(2)從表一、二中所有尚待改進(jìn)的學(xué)生中隨機(jī)抽取3人進(jìn)行交談,記其中抽取的女生人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望;
(3)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 | 45 |
參考公式:,其中.
參考數(shù)據(jù):
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】給出如下四個命題:①若“且”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC的外接圓⊙O的半徑為5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,.
(1)求證:平面AEC⊥平面BCED;
(2)試問線段DE上是否存在點(diǎn)M,使得直線AM與平面ACE所成角的正弦值為?若存在,確定點(diǎn)M的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com