科目: 來源: 題型:
【題目】某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]的頻數(shù)分別為8,2.
(1)求樣本容量和頻率分布直方圖中的的值;
(2)估計(jì)本次競賽學(xué)生成績的中位數(shù);
(3)在選取的樣本中,從競賽成績在分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生,求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,(n∈N*).
(1)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和;
(3)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù)(),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若 為其定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)生產(chǎn)某種商品噸,此時(shí)所需生產(chǎn)費(fèi)用為萬元,當(dāng)出售這種商品時(shí),每噸價(jià)格為萬元,這里(為常數(shù),).
(1)為了使這種商品的生產(chǎn)費(fèi)用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?
(2)如果生產(chǎn)出來的商品能全部賣完,當(dāng)產(chǎn)量是120噸時(shí)企業(yè)利潤最大,此時(shí)出售價(jià)格是每噸160萬元,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接2018年省運(yùn)會(huì),寧德市某體育館需要重新鋪設(shè)塑膠跑道.已知每毫米厚的跑道的鋪設(shè)成本為10萬元,跑道平均每年的維護(hù)費(fèi)C(單位:萬元)與跑道厚度x(單位:毫米)的關(guān)系為C(x)=,x∈[10,15].若跑道厚度為10毫米,則平均每年的維護(hù)費(fèi)需要9萬元.設(shè)總費(fèi)用f(x)為跑道鋪設(shè)費(fèi)用與10年維護(hù)費(fèi)之和.
(1)求k的值與總費(fèi)用f(x)的表達(dá)式;
(2)塑膠跑道鋪設(shè)多厚時(shí),總費(fèi)用f(x)最小,并求最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A、B分別是橢圓的左、右端點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于MB,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市組織高三全體學(xué)生參加計(jì)算機(jī)操作比賽,等級分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:
(1)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知p:x2-7x+10<0,q:x2-4mx+3m2<0,其中m>0.
(1)若m=3,p和q都是真命題,求x的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于函數(shù),有下列四個(gè)命題:①的值域是;②是奇函數(shù);③在上單調(diào)遞增;④方程總有四個(gè)不同的解;其中正確的是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系 中,橢圓 的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(﹣1,0),離心率.
(1)求橢圓G 的標(biāo)準(zhǔn)方程;
(2)已知直線 與橢圓 交于 兩點(diǎn),直線 與橢圓 交于 兩點(diǎn),且 ,如圖所示.
①證明: ;
②求四邊形 的面積 的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com