科目: 來源: 題型:
【題目】已知函數.
(1)求的極值;
(2)若函數在定義域內為增函數,求實數的取值范圍;
(3)設,若函數存在兩個零點,且滿足,問:函數在處的切線能否平行于軸?若能,求出該切線方程,若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數, ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數的導數,得到關于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導數研究其單調性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當時, , 單調遞減,且;
當時, , 單調遞增;且,
所以在上當單調遞減,在上單調遞增,且,
故,
故.
【點睛】本題考查利用函數的切線求參數的方法,以及利用導數證明不等式的方法,解題時要認真審題,注意導數性質的合理運用.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,曲線的參數方程為(, 為參數),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點, 與原點構成,且滿足,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為檢查某工廠所生產的8萬臺電風扇的質量,隨機抽取20臺,其無故障連續(xù)使用時限(單位:h)統(tǒng)計如下:
分組 | 頻數 | 頻率 | 頻率/組距 |
1 | 0.05 | 0.0025 | |
1 | 0.05 | 0.0025 | |
2 | 0.10 | 0.0050 | |
3 | 0.15 | 0.0075 | |
4 | 0.20 | 0.0100 | |
6 | 0.30 | 0.0150 | |
2 | 0.10 | 0.0050 | |
1 | 0.05 | 0.0025 | |
合計 | 20 | 1 | 0.050 |
(1)作出頻率分布直方圖;
(2)估計8萬臺電風扇中無故障連續(xù)使用時限不低于280h的有多少臺;
(3)假設同一組中的數據用該組區(qū)間的中點值代替,估計這8萬臺電風扇的平均無故障連續(xù)使用時限.
查看答案和解析>>
科目: 來源: 題型:
【題目】某班同學利用國慶節(jié)假期進行社會實踐,在年齡段的人群中隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數的頻率分布直方圖:
組別 | 分組 | “低碳族”的人數 | 占本組的頻率 |
第1組 | 120 | 0.6 | |
第2組 | 195 | ||
第3組 | 100 | 0.5 | |
第4組 | 0.4 | ||
第5組 | 30 | 0.3 | |
第6組 | 15 | 0.3 |
(1)補全頻率分布直方圖,并求,,的值;
(2)從年齡段的“低碳族”中采用分層隨機抽樣的方法抽取6人,求從年齡段的“低碳族”中應抽取的人數.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了鼓勵市民節(jié)約用電,某市實行“階梯式”電價,將每戶居民的月用電量分為二檔,月用電量不超過200度的部分按0.5元/度收費,超過200度的部分按0.8元/度收費.某小區(qū)共有居民1000戶,為了解居民的用電情況,通過抽樣,獲得了今年7月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)試估計該小區(qū)今年7月份用電量用不超過260元的戶數;
(3)估計7月份該市居民用戶的平均用電費用(同一組中的數據用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學有初中學生1800人,高中學生1200人.為了解學生本學期課外閱讀情況,現采用分層隨機抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們的課外閱讀時間,然后按初中學生和高中學生分為兩組,再將每組學生的閱讀時間(單位:h)分為5組:,,,,,并分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖,試估計該校所有學生中,閱讀時間不小于30h的學生人數為_______
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數,其圖象與軸相鄰的兩個交點的距離為.
(1)求函數的解析式;
(2)若將的圖象向左平移個長度單位得到函數的圖象恰好經過點,求當取得最小值時,在上的單調區(qū)間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com