科目: 來(lái)源: 題型:
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長(zhǎng)的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長(zhǎng),根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因?yàn)?/span>,則.
(2)由正弦定理
∴, , ,
∴周長(zhǎng)
∵,∴
∴當(dāng)即時(shí)
∴當(dāng)時(shí), 周長(zhǎng)的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】為了考察某校高三年級(jí)的教學(xué)水平,將抽查這個(gè)學(xué)校高三年級(jí)部分學(xué)生本學(xué)年的考試成績(jī).已知該校高三年級(jí)共有14個(gè)班,假定該校每班人數(shù)都相同.為了全面地反映實(shí)際情況,采取以下兩種方法進(jìn)行抽查:①?gòu)娜昙?jí)14個(gè)班中任意抽取一個(gè)班,再?gòu)脑摪嘀腥我獬槿?4人,考察他們的成績(jī);②把該校高三年級(jí)的學(xué)生按成績(jī)分成優(yōu)秀、良好、普通三個(gè)級(jí)別,從中抽取100名學(xué)生進(jìn)行考察(已知若按成績(jī)分層,該校高三學(xué)生中優(yōu)秀學(xué)生有105名,良好學(xué)生有420名,普通學(xué)生有175名).根據(jù)上面的敘述,試回答下列問(wèn)題:
(1)以上調(diào)查各自采用的是什么抽樣方法?
(2)試分別寫(xiě)出上面兩種抽樣方法各自抽取樣本的步驟.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某校高三年級(jí)有500名學(xué)生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)隨機(jī)抽出若干名學(xué)生在一次測(cè)試中的數(shù)學(xué)成績(jī)(滿分150分),制成如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
① | ② | |
0.050 | ||
0.200 | ||
12 | 0.300 | |
0.275 | ||
4 | ③ | |
0.050 | ||
合計(jì) | ④ |
(1)①②③④處應(yīng)分別填什么?
(2)根據(jù)頻率分布表完成頻率分布直方圖.
(3)試估計(jì)該校高三年級(jí)在這次測(cè)試中數(shù)學(xué)成績(jī)的平均分.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某服裝店對(duì)過(guò)去100天實(shí)體店和網(wǎng)店的銷售量(單位:件)進(jìn)行了統(tǒng)計(jì),制成頻率分布直方圖如下:
(1)已知該服裝店過(guò)去100天的銷售中,實(shí)體店和網(wǎng)店的銷售量都不低于50件的頻率為0.24,求過(guò)去100天的銷售中,實(shí)體店和網(wǎng)店至少有一邊銷售量不低于50件的天數(shù);
(2)根據(jù)頻率分布直方圖,求該服裝店網(wǎng)店銷售量的中位數(shù)的估計(jì)值(精確到0.01).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)是上的偶函數(shù),對(duì)于任意都有成立,當(dāng),且時(shí),都有.給出以下三個(gè)命題:
①直線是函數(shù)圖像的一條對(duì)稱軸;
②函數(shù)在區(qū)間上為增函數(shù);
③函數(shù)在區(qū)間上有五個(gè)零點(diǎn).
問(wèn):以上命題中正確的個(gè)數(shù)有( ).
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知數(shù)列的通項(xiàng)公式為.求所有的正整數(shù),使得數(shù)列的前項(xiàng)能分成兩部分,這兩部分的和相等.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)函數(shù)(),.
(1)若曲線與在它們的交點(diǎn)處有相同的切線,求實(shí)數(shù),的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)當(dāng),時(shí),求函數(shù)在區(qū)間上的最小值.
[選修4-4:坐標(biāo)系與參數(shù)方程]
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】光農(nóng)業(yè)科學(xué)研究所對(duì)冬季晝夜溫差大小與反季節(jié)土豆發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 26 | 32 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)11月2日至11月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
(注: ,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com