科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是2019年我國某地區(qū)新能源乘用車的前5個月銷售量與月份的統(tǒng)計表:
月份代碼 | 1 | 2 | 3 | 4 | 5 |
銷售量(萬輛) | 0.5 | 0.6 | 1 | 1.4 | 1.5 |
(1)利用線性相關(guān)系數(shù)判斷與的線性相關(guān)性,并求出線性回歸方程
(2)根據(jù)線性回歸方程預(yù)報2019年6月份的銷售量約為多少萬輛?
參考公式:,;回歸直線:.
,
查看答案和解析>>
科目: 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這個x個分店的年收入之和.
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程
(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
(參考公式:,其中,)
查看答案和解析>>
科目: 來源: 題型:
【題目】
11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。
(1)求的值,并根據(jù)頻率分布直方圖估計該校學(xué)生一周課外閱讀時間的平均值;
(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊,求這2人來自不同組別的概率。
查看答案和解析>>
科目: 來源: 題型:
【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )
A. 月跑步平均里程的中位數(shù)為6月份對應(yīng)的里程數(shù)
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在8、9月
D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目: 來源: 題型:
【題目】四色猜想是近代數(shù)學(xué)難題之一,四色猜想的內(nèi)容是:“任何一張地圖最多用四種顏色就能使具有共同邊界的國家著上不同的顏色”,如圖,一張地圖被分成了五個區(qū)域,每個區(qū)域只使用一種顏色,現(xiàn)有4種顏色可供選擇(四種顏色不一定用完),則滿足四色猜想的不同涂色種數(shù)為__________
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是86.
(1)求出x,y的值,且分別求甲、乙兩個班中5名學(xué)生成績的方差、,并根據(jù)結(jié)
果,你認(rèn)為應(yīng)該選派哪一個班的學(xué)生參加決賽?
(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題:
①相關(guān)指數(shù)越小,則殘差平方和越小,模型的擬合效果越好.
②在的列聯(lián)表中我們可以通過等高條形圖直觀判斷兩個變量是否有關(guān).
③殘差點(diǎn)比較均勻地落在水平帶狀區(qū)域內(nèi),帶狀區(qū)域越窄,說明模型擬合精度越高.
④兩個隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r越接近1.
其中正確命題的個數(shù)為( ).
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】對某兩名高三學(xué)生連續(xù)9次數(shù)學(xué)測試的成績(單位:分)進(jìn)行統(tǒng)計得到如下折線圖.下列有關(guān)這兩名學(xué)生數(shù)學(xué)成績的分析中,錯誤的結(jié)論是( )
A.甲同學(xué)的成績折線圖具有較好的對稱性,與正態(tài)曲線相近,故而平均成績?yōu)?/span>130分
B.根據(jù)甲同學(xué)成績折線圖中的數(shù)據(jù)進(jìn)行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間內(nèi)
C.乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān)
D.乙同學(xué)在這連續(xù)九次測驗(yàn)中的最高分與最低分的差超過40分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com