科目: 來源: 題型:
【題目】已知拋物線的焦點為F,過F作兩條互相垂直的弦AB、CD,設AB、CD的中點分別為M、N。
(1)求證:直線MN必過定點;
(2)分別以AB和CD為直徑作圓,求兩圓相交弦中點H的軌跡方程。
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)和的積函數(shù).
(1)求函數(shù)的表達式,并求其定義域;
(2)當時,求函數(shù)的值域
(3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構成的集合;若不存在,試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù)(a>0,且a≠1)的反函數(shù)為,函數(shù)y=g(x)的圖像與的圖像關于點(a,0)對稱。
(1)求函數(shù)y=g(x)的解析式。
(2)是否存在實數(shù)a,使得當時,恒有成立?若存在,求出a的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】如果存在1,2,...,n的一個排列,使得都是完全平方數(shù),就稱n為“中數(shù)”。那么,在集合{15,17,2006}中,是中數(shù)的元素共有______個。
查看答案和解析>>
科目: 來源: 題型:
【題目】某種植物感染病毒極易導致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對20株感染了病毒的該植株樣本進行噴霧試驗測試藥效.測試結果分“植株死亡”和“植株存活”兩個結果進行統(tǒng)計;并對植株吸收制劑的量(單位:mg)進行統(tǒng)計.規(guī)定:植株吸收在6mg(包括6mg)以上為“足量”,否則為“不足量”.現(xiàn)對該20株植株樣本進行統(tǒng)計,其中 “植株存活”的13株,對制劑吸收量統(tǒng)計得下表.已知“植株存活”但“制劑吸收不足量”的植株共1株.
編號 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量(mg) | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
(1)完成以下列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認為“植株的存活”與“制劑吸收足量”有關?
吸收足量 | 吸收不足量 | 合計 | |
植株存活 | 1 | ||
植株死亡 | |||
合計 | 20 |
(2)①若在該樣本“吸收不足量”的植株中隨機抽取3株,記為“植株死亡”的數(shù)量,求得分布列和期望;
②將頻率視為概率,現(xiàn)在對已知某塊種植了1000株并感染了病毒的該植物試驗田里進行該藥品噴霧試驗,設“植株存活”且“吸收足量”的數(shù)量為隨機變量,求.
參考數(shù)據(jù):,其中
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合S={1,2,3,4,5,6},一一映射f:S→S滿足條件:對于任意的x∈S,有f(f(f(x)))=x。則滿足條件的映射f的個數(shù)是( )。
A. 81 B. 80 C. 40 D. 27
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖設計一幅矩形宣傳畫,要求畫面面積為4840,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面高與寬的尺寸,才能使宣傳畫所用紙張面積最小?
查看答案和解析>>
科目: 來源: 題型:
【題目】己知向量,,設函數(shù),且的圖象過點和點.
(1)當時,求函數(shù)的最大值和最小值及相應的的值;
(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,直線l與橢圓C交于A、B兩點,且
(1)求橢圓C的方程;
(2)若A、B兩點關于原點O的對稱點分別為,且,判斷四邊形是否存在內(nèi)切的定圓?若存在,請求出該內(nèi)切圓的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com