相關(guān)習題
 0  262784  262792  262798  262802  262808  262810  262814  262820  262822  262828  262834  262838  262840  262844  262850  262852  262858  262862  262864  262868  262870  262874  262876  262878  262879  262880  262882  262883  262884  262886  262888  262892  262894  262898  262900  262904  262910  262912  262918  262922  262924  262928  262934  262940  262942  262948  262952  262954  262960  262964  262970  262978  266669 

科目: 來源: 題型:

【題目】設(shè)函數(shù),

1)當時,函數(shù)有兩個極值點,求的取值范圍;

2)若在點處的切線與軸平行,且函數(shù)時,其圖象上每一點處切線的傾斜角均為銳角,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】“過大年,吃水餃”是我國不少地方過春節(jié)的一大習俗,2020年春節(jié)前夕,A市某質(zhì)檢部門隨機抽取了100包某種品牌的速凍水餃,檢測其某項質(zhì)量指標.

1)求所抽取的100包速凍水餃該項質(zhì)量指標值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)①由直方圖可以認為,速凍水餃的該項質(zhì)量指標值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;

②將頻率視為概率,若某人從某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學期望.

附:①計算得所抽查的這100包速凍水餃的質(zhì)量指標的標準差為;

②若,則,

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,–2),C(4,1).

(1)若,求D點的坐標;

(2)設(shè)向量,,若k+3平行,求實數(shù) 的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解某班學生喜好體育運動是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運動

不喜好體育運動

合計

男生

5

女生

10

合計

50

已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數(shù)為6.

(1)請將上面的列聯(lián)表補充完整;

(2)能否在犯錯概率不超過的前提下認為喜好體育運動與性別有關(guān)?說明你的理由.

(參考公式: )

臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的焦點為,準線為,拋物線上存在一點,過點,垂足為,使是等邊三角形且面積為.

(1)求拋物線的方程;

(2)若點是圓與拋物線的一個交點,點,當取得最小值時,求此時圓的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為的中點.

(1)求證:平面平面;

(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】我市正在創(chuàng)建全國文明城市,某高中為了解學生的創(chuàng)文知曉率,按分層抽樣的方法從“表演社”、“演講社”、“圍棋社”三個活動小組中隨機抽取了6人進行問卷調(diào)查,各活動小組人數(shù)統(tǒng)計如下圖:

(1)從參加問卷調(diào)查的6名學生中隨機抽取2名,求這2名學生來自同一小組的概率;

(2)從參加問卷調(diào)查的6名學生中隨機抽取3名,用表示抽得“表演社”小組的學生人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,23的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.

1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;

2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案