相關(guān)習題
 0  263077  263085  263091  263095  263101  263103  263107  263113  263115  263121  263127  263131  263133  263137  263143  263145  263151  263155  263157  263161  263163  263167  263169  263171  263172  263173  263175  263176  263177  263179  263181  263185  263187  263191  263193  263197  263203  263205  263211  263215  263217  263221  263227  263233  263235  263241  263245  263247  263253  263257  263263  263271  266669 

科目: 來源: 題型:

【題目】已知函數(shù)).

1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);

2)若函數(shù)處取得極值,0),恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):

;

;

;

;

1)試從上述五個式子中選擇一個,求出這個常數(shù);

2)根據(jù)(1)的計算結(jié)果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】下圖是某市年至年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的條形圖.

(1)若從年到年的五年中,任意選取兩年,則這兩年的投資額的平均數(shù)不少于億元的概率;

(2)為了預測該市年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時間變量的兩個線性回歸模型.根據(jù)年至年的數(shù)據(jù)(時間變量的值依次為)建立模型①:;根據(jù)年至年的數(shù)據(jù)(時間變量的值依次為)建立模型②:

(i)分別利用這兩個模型,求該地區(qū)年的環(huán)境基礎(chǔ)設(shè)施投資額的預測值;

(ii)你認為用哪個模型得到的預測值更可靠?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】太極是中國古代的哲學術(shù)語,意為派生萬物的本源.太極圖是以黑白兩個魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達了陰陽輪轉(zhuǎn),相反相成是萬物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標系中,圓的圖象分割為兩個對稱的魚形圖案,圖中的兩個一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為,現(xiàn)在大圓內(nèi)隨機投放一點,則此點投放到“魚眼”部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓,直線,直線過點,傾斜角為,以原點為極點,軸的正半軸為極軸建立極坐標系.

(1)寫出直線與圓的交點極坐標及直線的參數(shù)方程;

(2)設(shè)直線與圓交于,兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】學校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中,設(shè)導函數(shù).

Ⅰ)設(shè),若恒成立,求的范圍

Ⅱ)設(shè)函數(shù)的零點為,函數(shù)的極小值點為,當時,求證.

查看答案和解析>>

科目: 來源: 題型:

【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量單位:萬元)和收益單位:萬元)的數(shù)據(jù)如下表

月份

廣告投入量

收益

他們分別用兩種模型①,分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值

Ⅰ)根據(jù)殘差圖,比較模型①②的擬合效果,應選擇哪個模型?并說明理由;

Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除

。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程

ⅱ)若廣告投入量時,該模型收益的預報值是多少?

附:對于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計分別為

,.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學擬在高一下學期開設(shè)游泳選修課,為了了解高一學生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學生中抽取100人做調(diào)查,得到列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

40

女生

30

合計

100

且已知在100個人中隨機抽取1人,抽到喜歡游泳的學生的概率為

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有99.9%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由.

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習冊答案