科目: 來源: 題型:
【題目】請你設計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點,正好形成一個正四棱柱形狀的包裝盒,在上,是被切去的一個等腰直角三角形斜邊的兩個端點,設().
(1)某廣告商要求包裝盒的側(cè)面積最大,試問應取何值?
(2)某廠商要求包裝盒的容積最大,試問應取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,點在棱上,且.
(Ⅰ)求證:;
(Ⅱ)是否存在實數(shù),使得二面角的余弦值為?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學史上的一個偉大成就.在“楊輝三角”中,若去除所有為1的項,依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前56項和為( )
A.2060B.2038C.4084D.4108
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線C1:y=x2(p>0)的焦點與雙曲線C2:-y2=1的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則p=( ).
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了改善市民的生活環(huán)境,信陽市決定對信陽市的1萬家中小型化工企業(yè)進行污染情況摸排,并出臺相應的整治措施.通過對這些企業(yè)的排污口水質(zhì),周邊空氣質(zhì)量等的檢驗,把污染情況綜合折算成標準分100分,發(fā)現(xiàn)信陽市的這些化工企業(yè)污染情況標準分基本服從正態(tài)分布N(50,162),分值越低,說明污染越嚴重;如果分值在[50,60]內(nèi),可以認為該企業(yè)治污水平基本達標.
(1)如圖是信陽市的某工業(yè)區(qū)所有被調(diào)查的化工企業(yè)的污染情況標準分的頻率分布直方圖,請計算這個工業(yè)區(qū)被調(diào)查的化工企業(yè)的污染情況標準分的平均值,并判斷該工業(yè)區(qū)的化工企業(yè)的治污平均值水平是否基本達標;
(2)大量調(diào)査表明,如果污染企業(yè)繼續(xù)生產(chǎn),那么標準分低于18分的化工企業(yè)每月對周邊造成的直接損失約為10萬元,標準分在[18,34)內(nèi)的化工企業(yè)每月對周邊造成的直接損失約為4萬元.長沙市決定關(guān)停80%的標準分低于18分的化工企業(yè)和60%的標準分在[18,34)內(nèi)的化工企業(yè),每月可減少的直接損失約有多少?
(附:若隨機變量,則, ,)
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩個班級(各40名學生)進行一門考試,為易于統(tǒng)計分析,將甲、乙兩個班學生的成績分成如下四組:,,,,并分別繪制了如下的頻率分布直方圖:
規(guī)定:成績不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.
(1)根據(jù)這次抽查的數(shù)據(jù),填寫下面的列聯(lián)表:
優(yōu)秀 | 不優(yōu)秀 | 合計 | |
甲班 | |||
乙班 | |||
合計 |
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認為成績是否優(yōu)秀與班級有關(guān)?
附:臨界值參考表與參考公式
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線的極坐標方程為
(1)求曲線C和直線的直角坐標系方程;
(2)已知直線與曲線C相交于A,B兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線,橢圓分別為橢圓的左、右焦點.
(1)當直線過右焦點時,求橢圓的標準方程;
(2)設直線與橢圓交于兩點,為坐標原點,且,若點在以線段為直徑的圓內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點.
(Ⅰ)求證:平面 ;
(Ⅱ)求平面AEF與平面BEC所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com