相關(guān)習(xí)題
 0  263200  263208  263214  263218  263224  263226  263230  263236  263238  263244  263250  263254  263256  263260  263266  263268  263274  263278  263280  263284  263286  263290  263292  263294  263295  263296  263298  263299  263300  263302  263304  263308  263310  263314  263316  263320  263326  263328  263334  263338  263340  263344  263350  263356  263358  263364  263368  263370  263376  263380  263386  263394  266669 

科目: 來源: 題型:

【題目】已知橢圓C)的左右焦點(diǎn)分別為.橢圓C上任一點(diǎn)P都滿足,并且該橢圓過點(diǎn).

求橢圓C的方程;

Ⅱ)過點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),過點(diǎn)Ax軸的垂線,交該橢圓于點(diǎn)M,求證:三點(diǎn)共線.

查看答案和解析>>

科目: 來源: 題型:

【題目】為探索課堂教學(xué)改革,惠來縣某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和導(dǎo)學(xué)案兩種教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),得到如下莖葉圖.記成績(jī)不低于70分者為成績(jī)優(yōu)良”.

Ⅰ)分析甲、乙兩班的樣本成績(jī),大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;

Ⅱ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為成績(jī)是否優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

參考公式:,其中是樣本容量.

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目: 來源: 題型:

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說明理由;

(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿做了統(tǒng)計(jì),得到以下數(shù)據(jù)分布:

選擇意愿

人員結(jié)構(gòu)

40歲以上(含40歲)男性

40歲以上(含40歲)女性

40歲以下男性

40歲以下女性

選擇甲公司

110

120

140

80

選擇乙公司

150

90

200

110

若分析選擇意愿與年齡這兩個(gè)分類變量,計(jì)算得到的K2的觀測(cè)值為k15.5513,測(cè)得出選擇意愿與年齡有關(guān)系的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為的正方形,平面PAC底面ABCDPA=PC=

1)求證:PB=PD;

2)若點(diǎn)M,N分別是棱PA,PC的中點(diǎn),平面DMN與棱PB的交點(diǎn)Q,則在線段BC上是否存在一點(diǎn)H,使得DQPH,若存在,BH的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方體ABCDABCD,平面垂直于對(duì)角線AC,且平面截得正方體的六個(gè)表面得到截面六邊形,記此截面六邊形的面積為S,周長(zhǎng)為l,則(

A. S為定值,l不為定值 B. S不為定值,l為定值

C. Sl均為定值 D. Sl均不為定值

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時(shí)間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

男職工

女職工

總計(jì)

每周平均上網(wǎng)時(shí)間不超過4個(gè)小時(shí)

每周平均上網(wǎng)時(shí)間超過4個(gè)小時(shí)

70

總計(jì)

300

(Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這300個(gè)樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,.試估計(jì)該公司職工每周平均上網(wǎng)時(shí)間超過4小時(shí)的概率是多少?

(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時(shí)間超過4個(gè)小時(shí).請(qǐng)將每周平均上網(wǎng)時(shí)間與性別的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為“該公司職工的每周平均上網(wǎng)時(shí)間與性別有關(guān)”

查看答案和解析>>

科目: 來源: 題型:

【題目】2018年6月份上合峰會(huì)在青島召開,面向高校招募志愿者,中國(guó)海洋大學(xué)海洋環(huán)境學(xué)院的8名同學(xué)符合招募條件并審核通過,其中大一、大二、大三、大四每個(gè)年級(jí)各2名.若將這8名同學(xué)分成甲乙兩個(gè)小組,每組4名同學(xué),其中大一的兩名同學(xué)必須分到同一組,則分到乙組的4名同學(xué)中恰有2名同學(xué)是來自于同一年級(jí)的分組方式共有__________種.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C的一個(gè)頂點(diǎn)為,且過拋物線的焦點(diǎn)F

(1)求橢圓C的方程及離心率;

(2)設(shè)點(diǎn)Q是橢圓C上一動(dòng)點(diǎn),試問直線上是否存在點(diǎn)P,使得四邊形PFQB是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案