相關(guān)習(xí)題
 0  263506  263514  263520  263524  263530  263532  263536  263542  263544  263550  263556  263560  263562  263566  263572  263574  263580  263584  263586  263590  263592  263596  263598  263600  263601  263602  263604  263605  263606  263608  263610  263614  263616  263620  263622  263626  263632  263634  263640  263644  263646  263650  263656  263662  263664  263670  263674  263676  263682  263686  263692  263700  266669 

科目: 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.

)證明: BC1//平面A1CD;

)設(shè)AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列中的項按順序可以排列成如圖的形式,第一行項,排;第二行項,從左到右分別排,;第三行項,……以此類推,設(shè)數(shù)列的前項和為,則滿足的最小正整數(shù)的值為( )

4,

4,43

4,43,4

4,43,4 , 4

A. B.

C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左頂點為,離心率為,過點且斜率為的直線與橢圓交于點軸交于點.

(1)求橢圓的方程;

(2)設(shè)點的中點.

(i)若軸上存在點,對于任意的,都有為原點),求出點的坐標(biāo);

(ii)射線為原點)與橢圓交于點,滿足,求正數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】若兩直線的傾斜角分別為 ,則下列四個命題中正確的是( )

A. <,則兩直線的斜率:k1 < k2 B. =,則兩直線的斜率:k1= k2

C. 若兩直線的斜率:k1 < k2 ,則< D. 若兩直線的斜率:k1= k2 ,則=

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,直線相切,求的值;

(2)若函數(shù)內(nèi)有且只有一個零點,求此時函數(shù)的單調(diào)區(qū)間;

(3)當(dāng)時,若函數(shù)上的最大值和最小值的和為1,求實數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,為邊的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C)過點,短軸一個端點到右焦點的距離為2

1)求橢圓C的方程;

2)設(shè)過定點的直線1與橢圓交于不同的兩點A,B,若坐標(biāo)原點O在以線段AB為直徑的圓上,求直線l的斜率k

查看答案和解析>>

科目: 來源: 題型:

【題目】某高中高一,高二,高三的模聯(lián)社團(tuán)的人數(shù)分別為35,28,21,現(xiàn)采用分層抽樣的方法從中抽取部分學(xué)生參加模聯(lián)會議,已知在高二年級和高三年級中共抽取7名同學(xué).

(Ⅰ)應(yīng)從高一年級選出參加會議的學(xué)生多少名?

(Ⅱ)設(shè)高二,高三年級抽出的7名同學(xué)分別用表示,現(xiàn)從中隨機(jī)抽取名同學(xué)承擔(dān)文件翻譯工作.

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)為事件“抽取的兩名同學(xué)來自同一年級”,求事件發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程及曲線的直角坐標(biāo)方程,并指出兩曲線的軌跡圖形;

(2)曲線與兩坐標(biāo)軸的交點分別為、,點在曲線上運動,當(dāng)曲線與曲線相切時,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是正方形,側(cè)面底面ABCD,且,設(shè)EF分別為PC,BD的中點.

1)求證:平面PAD;

2)求直線EF與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案