相關(guān)習(xí)題
 0  263568  263576  263582  263586  263592  263594  263598  263604  263606  263612  263618  263622  263624  263628  263634  263636  263642  263646  263648  263652  263654  263658  263660  263662  263663  263664  263666  263667  263668  263670  263672  263676  263678  263682  263684  263688  263694  263696  263702  263706  263708  263712  263718  263724  263726  263732  263736  263738  263744  263748  263754  263762  266669 

科目: 來源: 題型:

【題目】某中學(xué)為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在之間,將測量結(jié)果按如下方式分成六組:第1,第2,,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學(xué)校要從中選1名男生擔任足球隊長,求被選取的男生恰好在第5組或第6組的概率;

2)試估計該校高一年級全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個單位長度,得到幾何體如圖一,現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線L: y=x+m與拋物線y2=8x交于A、B兩點(異于原點),

(1)若直線L過拋物線焦點,求線段 |AB|的長度;

(2)若OA⊥OB ,求m的值;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知是橢圓與拋物線的一個公共點,且橢圓與拋物線具有一個相同的焦點

(1)求橢圓及拋物線的方程;

(2)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)直線l:y=2x﹣1與雙曲線,)相交于A、B兩個不

同的點,且(O為原點).

(1)判斷是否為定值,并說明理由;

(2)當雙曲線離心率時,求雙曲線實軸長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某電子商務(wù)平臺的管理員隨機抽取了1000位上網(wǎng)購物者,并對其年齡(在10歲到69歲之間)進行了調(diào)查,統(tǒng)計情況如下表所示.

年齡

人數(shù)

100

150

200

50

已知,,三個年齡段的上網(wǎng)購物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.

(1)求的值;

(2)若將年齡在內(nèi)的上網(wǎng)購物者定義為“消費主力軍”,其他年齡段內(nèi)的上網(wǎng)購物者定義為“消費潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取5人,再從這5人中抽取2人,求這2人中至少有一人是消費潛力軍的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足.當點在圓上運動時,記點的軌跡為曲線.

(1)求曲線的方程;

(2)已知點,過的直線交曲線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足.當點在圓上運動時,記點的軌跡為曲線.

(1)求曲線的方程;

(2)已知點,過的直線交曲線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,為線段的中點,為線段上的一點.

(1)證明:平面平面.

(2)若,二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案