科目: 來源: 題型:
【題目】若無窮數(shù)列滿足:,當',時, (其中表示,,…,中的最大項),有以下結論:
① 若數(shù)列是常數(shù)列,則;
② 若數(shù)列是公差的等差數(shù)列,則;
③ 若數(shù)列是公比為的等比數(shù)列,則:
④ 若存在正整數(shù),對任意,都有,則,是數(shù)列的最大項.
其中正確結論的序號是____(寫出所有正確結論的序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4坐標系與參數(shù)方程選講
在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點.
(1)寫出曲線的平面直角坐標方程和直線的普通方程:
(2)若成等比數(shù)列,求實數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,對于直線和點、,記,若,則稱點,被直線l分隔,若曲線C與直線l沒有公共點,且曲線C上存在點,被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點、被直線分隔;
(2)若直線是曲線的分隔線,求實數(shù)的取值范圍;
(3)動點M到點的距離與到y軸的距離之積為1,設點M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.
查看答案和解析>>
科目: 來源: 題型:
【題目】一次考試中,五名學生的數(shù)學、物理成績?nèi)缦卤硭荆?/span>
學生 | A1 | A2 | A3 | A4 | A5 |
數(shù)學(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)要從5名學生中選2人參加一項活動,求選中的學生中至少有一人的物理成績高于90分的概率;
(2)請在所給的直角坐標系中畫出它們的散點圖,并求這些數(shù)據(jù)線性回歸方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線上在第一象限內(nèi)的點H(1,t)到焦點F的距離為2.
(1)若,過點M,H的直線與該拋物線相交于另一點N,求的值;
(2)設A、B是拋物線E上分別位于x軸兩側的兩個動點,且(其中O為坐標原點).
①求證:直線AB必過定點,并求出該定點Q的坐標;
②過點Q作AB的垂線與該拋物線交于G、D兩點,求四邊形AGBD面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為征求個人所得稅法修改建議,某機構對當?shù)鼐用竦脑率杖胝{查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進一步分析,則月收入在的這段應抽多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正三角形 的邊長為3, 分別是邊上的點,滿足 (如圖1).將折起到的位置,使平面平面,連接(如圖2).
(1)求證:平面 ;
(2)求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中藥種植基地有兩處種植區(qū)的藥材需在下周一、下周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘.由于下雨會影響藥材品質,基地收益如下表所示:
周一 | 無雨 | 無雨 | 有雨 | 有雨 |
周二 | 無雨 | 有雨 | 無雨 | 有雨 |
收益 | 萬元 | 萬元 | 萬元 | 萬元 |
若基地額外聘請工人,可在周一當天完成全部采摘任務.無雨時收益為萬元;有雨時,收益為萬元.額外聘請工人的成本為萬元.
已知下周一和下周二有雨的概率相同,兩天是否下雨互不影響,基地收益為萬元的概率為.
(Ⅰ)若不額外聘請工人,寫出基地收益的分布列及基地的預期收益;
(Ⅱ)該基地是否應該外聘工人,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)某校夏令營有3名男同學A、B、C和3名女同學X、Y、Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學 | A | B | C |
女同學 | X | Y | Z |
現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同).
①用表中字母列舉出所有可能的結果;
②設M為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件M發(fā)生的概率.
(2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過2秒的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com