相關(guān)習題
 0  263683  263691  263697  263701  263707  263709  263713  263719  263721  263727  263733  263737  263739  263743  263749  263751  263757  263761  263763  263767  263769  263773  263775  263777  263778  263779  263781  263782  263783  263785  263787  263791  263793  263797  263799  263803  263809  263811  263817  263821  263823  263827  263833  263839  263841  263847  263851  263853  263859  263863  263869  263877  266669 

科目: 來源: 題型:

【題目】若方程所表示的曲線為,則下面四個選項中錯誤的是( )

A.為橢圓,則B.是雙曲線,則其離心率有

C.為雙曲線,則D.為橢圓,且長軸在軸上,則

查看答案和解析>>

科目: 來源: 題型:

【題目】省環(huán)保廳對、、三個城市同時進行了多天的空氣質(zhì)量監(jiān)測,測得三個城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:

優(yōu)(個)

28

良(個)

32

30

已知在這180個數(shù)據(jù)中隨機抽取一個,恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個數(shù);

(2)已知 ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:

空調(diào)類

冰箱類

小家電類

其它類

營業(yè)收入占比

凈利潤占比

則下列判斷中不正確的是( )

A. 該公司2018年度冰箱類電器營銷虧損

B. 該公司2018年度小家電類電器營業(yè)收入和凈利潤相同

C. 該公司2018年度凈利潤主要由空調(diào)類電器銷售提供

D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會降低

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的方程為,圓軸相切于點,與軸正半軸相交于、兩點,且,如圖1.

1)求圓的方程;

2)如圖1,過點的直線與橢圓相交于、兩點,求證:射線平分

3)如圖2所示,點、是橢圓的兩個頂點,且第三象限的動點在橢圓上,若直線軸交于點,直線軸交于點,試問:四邊形的面積是否為定值?若是,請求出這個定值,若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中.

(1)若函數(shù)僅在處取得極值,求實數(shù)的取值范圍;

(2)若函數(shù)有三個極值點,,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,頂點在底面的射影恰好是菱形對角線的交點,且,,,其中.

(1)當時,求證:;

(2)當與平面所成角的正弦值為時,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的頂點在原點,對稱軸是軸,且過點.

(Ⅰ)求拋物線的方程;

(Ⅱ)已知斜率為的直線軸于點,且與曲線相切于點,點在曲線上,且直線軸, 關(guān)于點的對稱點為,判斷點是否共線,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著電子商務(wù)的興起,網(wǎng)上銷售為人們帶來了諸多便利.商務(wù)部預計,到2020年,網(wǎng)絡(luò)銷售占比將達到.網(wǎng)購的發(fā)展同時促進了快遞業(yè)的發(fā)展,現(xiàn)有甲、乙兩個快遞公司,每位打包工平均每天打包數(shù)量在范圍內(nèi).為擴展業(yè)務(wù),現(xiàn)招聘打包工.兩公司提供的工資方案如下:甲公司打包工每天基礎(chǔ)工資64元,且每天每打包一件快遞另賺1元;乙公司打包工無基礎(chǔ)工資,如果每天打包量不超過240件,則每打包一件快遞可賺1.2元;如果當天打包量超過240件,則超出的部分每件賺1.8元.

下圖為隨機抽取的打包工每天需要打包數(shù)量的頻率分布直方圖,以打包量的頻率作為各打包量發(fā)生的概率.(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表).

(1)(i)以每天打包量為自變量,寫出乙公司打包工的收入函數(shù)

(ii)若打包工小李是乙公司員工,求小李一天收入不低于324元的概率;

(2)某打包工在甲、乙兩個快遞公司中選擇一個公司工作,如果僅從日平均收入的角度考慮,請利用所學的統(tǒng)計學知識為該打包工作出選擇,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】[選修4—5:參數(shù)方程選講]

在直角坐標系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程是

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若兩曲線交點為A、B,求

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓的左、右焦點分別為,右頂點為A,上頂點為B,且滿足向量

(1)若A,求橢圓的標準方程;

(2)設(shè)P為橢圓上異于頂點的點,以線段PB為直徑的圓經(jīng)過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案