相關(guān)習(xí)題
 0  263965  263973  263979  263983  263989  263991  263995  264001  264003  264009  264015  264019  264021  264025  264031  264033  264039  264043  264045  264049  264051  264055  264057  264059  264060  264061  264063  264064  264065  264067  264069  264073  264075  264079  264081  264085  264091  264093  264099  264103  264105  264109  264115  264121  264123  264129  264133  264135  264141  264145  264151  264159  266669 

科目: 來源: 題型:

【題目】已知定點(diǎn),動(dòng)點(diǎn)軸上運(yùn)動(dòng),過點(diǎn)作直線軸于點(diǎn),延長至點(diǎn),使點(diǎn)的軌跡是曲線

1)求曲線的方程;

2)若是曲線上的兩個(gè)動(dòng)點(diǎn),滿足,證明:直線過定點(diǎn);

3)若直線與曲線交于兩點(diǎn),且,,求直線的斜率的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于點(diǎn),若函數(shù)滿足:,都有,就稱這個(gè)函數(shù)是點(diǎn)的“限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點(diǎn)的“限定函數(shù)”的序號(hào)是______.已知點(diǎn)在函數(shù)的圖象上,若函數(shù)是點(diǎn)的“限定函數(shù)”,則的取值范圍是______

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過坐標(biāo)原點(diǎn)

1)若直線和直線的斜率都存在且分別為,求證:

2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、所圍成四邊形的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).

(1)求的值;

(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線,且交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;

(3)在(2)的條件下,經(jīng)過點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問:點(diǎn)是否在直線上,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長為 .

(1)求橢圓 的方程;

(2)過點(diǎn) 的直線 交橢圓于 , 兩個(gè)不同的點(diǎn),且 ,求 的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}滿足:,且an+1n=12…)集合M={an|}中的最小元素記為m.

1)若a1=20,寫出ma10的值:

2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);

3)證明:當(dāng)且僅當(dāng)時(shí),集合M是有限集.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知A,B,C是拋物線Wy2=4x上的三個(gè)點(diǎn),Dx軸上一點(diǎn).

1)當(dāng)點(diǎn)BW的頂點(diǎn),且四邊形ABCD為正方形時(shí),求此正方形的面積;

2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形ABCD是否可能為正方形,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)=lnxx+1.

1)求曲線y=fx)在點(diǎn)(1,f1))處的切線方程:

2)若非零實(shí)數(shù)a使得fxaxax2x∈[1,+)恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,.

I)證明:;

II)求直線與平面所成角的正弦值;

III)在邊上是否存在點(diǎn),使所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱柱ABCDA1B1C1D1中,底面四邊形ABCD是矩形,平面DCC1D1⊥平面ABCD.AD=3,CD=DD1=5,∠D1DC=120°,M,N分別是線段AD1,BD的中點(diǎn).

1)求證:MN//平面DCC1D1;

2)求證:MN⊥平面ADC1;

3)求三棱錐D1ADC1的體積.

查看答案和解析>>

同步練習(xí)冊答案