科目: 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設(shè)為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,,分別是的中點。
(1)求證:;
(2)求平面與平面所成銳二面角的大;
(3)線段上是否存在一個動點,使得直線與平面所成角為,若存在,求線段的長度,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項等比數(shù)列,等差數(shù)列滿足,且是與的等比中項.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).
(1)求函數(shù)在[0,π] 上的最大值與最小值;
(2)令,討論的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD, E是PD的中點.
(1)證明:直線 平面PAB;
(2)點M在棱PC 上,且直線BM與底面ABCD所成角為 ,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)=x3+ax2+bx+1的導數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)e-x,求函數(shù)g(x)的極值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓 的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線交橢圓于,兩點(為坐標原點),的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐中,,,,,分別是,的中點,在上且.
(I)求證:;
(II)求直線與平面所成角的正弦值;
(III)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com