科目: 來源: 題型:
【題目】概率論起源于博弈游戲.17世紀(jì),曾有一個“賭金分配“的問題:博弈水平相當(dāng)?shù)募、乙兩人進(jìn)行博弈游戲,每局比賽都能分出勝負(fù),沒有平局.雙方約定,各出賭金48枚金幣,先贏3局者可獲得全部賭金;但比賽中途因故終止了,此時甲贏了2局,乙贏了1局.向這96枚金幣的賭金該如何分配?數(shù)學(xué)家費馬和帕斯卡都用了現(xiàn)在稱之為“概率“的知識,合理地給出了賭金分配方案.該分配方案是( )
A.甲48枚,乙48枚B.甲64枚,乙32枚
C.甲72枚,乙24枚D.甲80枚,乙16枚
查看答案和解析>>
科目: 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個學(xué)生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。
A.甲的物理成績領(lǐng)先年級平均分最多
B.甲有2個科目的成績低于年級平均分
C.甲的成績從高到低的前3個科目依次是地理、化學(xué)、歷史
D.對甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,在中,,為的中點,四邊形是等腰梯形,,.
(Ⅰ)求異面直線與所成角的正弦值;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某區(qū)在2019年教師招聘考試中,參加、、、四個崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性應(yīng)聘人數(shù) | 男性錄用人數(shù) | 男性錄用比例 | 女性應(yīng)聘人數(shù) | 女性錄用人數(shù) | 女性錄用比例 |
269 | 167 | 62% | 40 | 24 | 60% | |
217 | 69 | 32% | 386 | 121 | 31% | |
44 | 26 | 59% | 38 | 22 | 58% | |
3 | 2 | 67% | 3 | 2 | 67% | |
總計 | 533 | 264 | 50% | 467 | 169 | 36% |
(1)從表中所有應(yīng)聘人員中隨機(jī)抽取1人,試估計此人被錄用的概率;
(2)將應(yīng)聘崗位的男性教師記為,女性教師記為,現(xiàn)從應(yīng)聘崗位的6人中隨機(jī)抽取2人.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人性別不同”,求事件發(fā)生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的長軸長為4,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(異于點),過作的角平分線交橢圓于另一點.證明:直線與坐標(biāo)軸平行.
查看答案和解析>>
科目: 來源: 題型:
【題目】華為手機(jī)作為全球手機(jī)銷量第二位,一直深受消費者喜歡.據(jù)調(diào)查數(shù)據(jù)顯示,2019年度華為手機(jī)(含榮耀)在中國市場占有率接近!小明為了考查購買新手機(jī)時選擇華為是否與年齡有一定關(guān)系,于是隨機(jī)調(diào)查100個2019年購買新手機(jī)的人,得到如下不完整的列表.定義30歲以下為“年輕用戶”,30歲以上為“非年輕用戶”.
購買華為 | 購買其他 | 總計 | |
年輕用戶 | 28 | ||
非年輕用戶 | 24 | 60 | |
總計 |
附:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(1)將列表填充完整,并判斷是否有的把握認(rèn)為購買手機(jī)時選擇華為與年齡有關(guān)?
(2)若采用分層抽樣的方法從購買華為手機(jī)用戶中抽出6個人,再隨機(jī)抽2人,求恰好抽到的兩人都是非年輕用戶的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進(jìn)行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的“特殊”狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,根據(jù)船接收到臺和臺電磁波的時間差,計算出船到發(fā)射臺的距離比到發(fā)射臺的距離遠(yuǎn)30海里,則點的坐標(biāo)(單位:海里)為( )
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在算法中“”和“”分別表示取商和取余數(shù).為了驗證三位數(shù)卡普雷卡爾“數(shù)字黑洞”(即輸入一個無重復(fù)數(shù)字的三位數(shù),經(jīng)過如圖的有限次的重排求差計算,結(jié)果都為495).小明輸入,則輸出的( )
A.3B.4C.5D.6
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的長軸長為4,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(異于點),過作的角平分線交橢圓于另一點.
(i)證明:直線與坐標(biāo)軸平行;
(ii)當(dāng)時,求四邊形的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com