相關習題
 0  264674  264682  264688  264692  264698  264700  264704  264710  264712  264718  264724  264728  264730  264734  264740  264742  264748  264752  264754  264758  264760  264764  264766  264768  264769  264770  264772  264773  264774  264776  264778  264782  264784  264788  264790  264794  264800  264802  264808  264812  264814  264818  264824  264830  264832  264838  264842  264844  264850  264854  264860  264868  266669 

科目: 來源: 題型:

【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,的面積.將,稱為基尼系數(shù).對于下列說法:

越小,則國民分配越公平;

②設勞倫茨曲線對應的函數(shù)為,則對,均有;

③若某國家某年的勞倫茨曲線近似為,則;

其中正確的是:(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目: 來源: 題型:

【題目】已知由nnN*)個正整數(shù)構成的集合A{a1a2,,an}a1a2ann≥3),記SAa1+a2+…+an,對于任意不大于SA的正整數(shù)m,均存在集合A的一個子集,使得該子集的所有元素之和等于m.

1)求a1a2的值;

2)求證:a1,a2,,an成等差數(shù)列的充要條件是

3)若SA2020,求n的最小值,并指出n取最小值時an的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點處的切線方程;

2)求的單調區(qū)間;

3)若對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點.

(Ⅰ)求證:PO平面;

(Ⅱ)求平面EFG與平面所成銳二面角的大。

(Ⅲ)線段上是否存在點,使得直線與平面所成角為,若存在,求線段的長度;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了提高學生的身體素質,某校高一、高二兩個年級共336名學生同時參與了我運動,我健康,我快樂的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數(shù)據(jù)(單位:個/分鐘):

1)求高一、高二兩個年級各有多少人?

2)設某學生跳繩/分鐘,踢毽/分鐘.,且時,稱該學生為運動達人”.

①從高二年級的學生中任選一人,試估計該學生為運動達人的概率;

②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為運動達人的人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調整為4045,5461,但調整只能在相鄰派送點進行,每次調動可以調整1件商品.為完成調整,則(

A.最少需要16次調動,有2種可行方案

B.最少需要15次調動,有1種可行方案

C.最少需要16次調動,有1種可行方案

D.最少需要15次調動,有2種可行方案

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列的前項和滿足,數(shù)列滿足

求數(shù)列和數(shù)列的通項公式;

,若對于一切的正整數(shù)恒成立,求實數(shù)的取值范圍;

數(shù)列中是否存在,且 使,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

若函數(shù)的最大值為3,求實數(shù)的值;

若當時,恒成立,求實數(shù)的取值范圍;

,是函數(shù)的兩個零點,且,求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的最大值為(其中為自然對數(shù)的底數(shù)),的導函數(shù)。

(1)求的值;

(2)任取兩個不等的正數(shù),且,若存在正數(shù),使得成立。求證:。

查看答案和解析>>

科目: 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質量指標值,由測量結果得如下頻率分布直方圖:

(1)求這100件產(chǎn)品質量指標值的樣本平均數(shù)和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點值作為代表);

(2)由直方圖可以認為,這種產(chǎn)品的質量指標值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差。

(i)若某用戶從該企業(yè)購買了10件這種產(chǎn)品,記表示這10件產(chǎn)品中質量指標值位于(187.4,225.2)的產(chǎn)品件數(shù),求;

(ii)一天內抽取的產(chǎn)品中,若出現(xiàn)了質量指標值在之外的產(chǎn)品,就認為這一天的生產(chǎn)過程中可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查下。下面的莖葉圖是檢驗員在一天內抽取的15個產(chǎn)品的質量指標值,根據(jù)近似值判斷是否需要對當天的生產(chǎn)過程進行檢查。

附:,,,

查看答案和解析>>

同步練習冊答案