相關習題
 0  264715  264723  264729  264733  264739  264741  264745  264751  264753  264759  264765  264769  264771  264775  264781  264783  264789  264793  264795  264799  264801  264805  264807  264809  264810  264811  264813  264814  264815  264817  264819  264823  264825  264829  264831  264835  264841  264843  264849  264853  264855  264859  264865  264871  264873  264879  264883  264885  264891  264895  264901  264909  266669 

科目: 來源: 題型:

【題目】已知函數(shù)fx)=log3ax+b)的圖象經(jīng)過點A21)和B52),anan+bnN*).

1)求{an};

2)設數(shù)列{an}的前n項和為Snbn,求{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護人員和醫(yī)療、生活物資嚴重匱乏,全國各地紛紛馳援.某運輸隊接到從武漢送往該市物資的任務,該運輸隊有8輛載重為6tA型卡車,6輛載重為10tB型卡車,10名駕駛員,要求此運輸隊每天至少運送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運輸隊所花的成本最低為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】已知A,B,C是球O球面上的三點,ACBC6,AB,且四面體OABC的體積為24.則球O的表面積為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx,若存在x1,x2Rx1x2,使得fx1)=fx2)成立,則實數(shù)a的取值范圍是(

A.[3,+∞)B.3,+∞)C.(﹣∞,3D.(﹣∞,3]

查看答案和解析>>

科目: 來源: 題型:

【題目】我國著名數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休.在數(shù)學的學習和研究中,常用函數(shù)的圖象研究函數(shù)的性質,也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)建文明城”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù),滿分100分),從中隨機抽取一個容量為120的樣本,發(fā)現(xiàn)所給數(shù)據(jù)均在[40,100]內.現(xiàn)將這些分數(shù)分成以下6組并畫出樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形則下列說法中有錯誤的是(

A.第三組的頻數(shù)為18

B.根據(jù)頻率分布直方圖估計眾數(shù)為75

C.根據(jù)頻率分布直方圖估計樣本的平均數(shù)為75

D.根據(jù)頻率分布直方圖估計樣本的中位數(shù)為75

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)=|x1|+|2x+2|gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)對x1Rx2R,使得fx1)≥gx2)成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為,曲線C2的直角坐標方程為.

1)若直線l與曲線C1交于M、N兩點,求線段MN的長度;

2)若直線lx軸,y軸分別交于AB兩點,點P在曲線C2上,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

)當時,求曲線在點處的切線方程;

)若,討論函數(shù)的單調性與單調區(qū)間;

)若有兩個極值點,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點F為橢圓ab0)的一個焦點,點A為橢圓的右頂點,點B為橢圓的下頂點,橢圓上任意一點到點F距離的最大值為3,最小值為1.

1)求橢圓的標準方程;

2)若MN在橢圓上但不在坐標軸上,且直線AM∥直線BN,直線AN、BM的斜率分別為k1k2,求證:k1k2e21e為橢圓的離心率).

查看答案和解析>>

同步練習冊答案