相關(guān)習(xí)題
 0  94004  94012  94018  94022  94028  94030  94034  94040  94042  94048  94054  94058  94060  94064  94070  94072  94078  94082  94084  94088  94090  94094  94096  94098  94099  94100  94102  94103  94104  94106  94108  94112  94114  94118  94120  94124  94130  94132  94138  94142  94144  94148  94154  94160  94162  94168  94172  94174  94180  94184  94190  94198  266669 

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:選擇題

數(shù)列{an}滿足:a1=1,且對任意的m,n∈N*都有:am+n=am+an+mn,則+++…+=( )
A.
B.
C.
D.

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:填空題

設(shè)x,y∈R,且滿足x-y+2=0,則的最小值為    若x,y又滿足y>4-x,則的取值范圍是   

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:填空題

若A,B,C為△ABC的三個內(nèi)角,則的最小值為   

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:填空題

已知數(shù)列{an}的前n項和為Sn,對任意n∈N*,都有Sn=an-,且1<Sk<9(k∈N*),則a1=    ,k=   

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:填空題

若f(n)表示n2+1(n∈N*)的各位數(shù)字之和,如:62=36,36+1=37,3+7=10,則f(6)=10,記f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n))(k∈N*),則f2009(8)=   

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:填空題

設(shè)函數(shù),計算和=   

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:填空題

已知點P(x,y)的坐標滿足設(shè)A(2,0),則(O為坐標原點)的最大值為   

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知數(shù)列{an}中的相鄰兩項a2k-1、a2k是關(guān)于x的方程x2-(3k+2k)x+3k•2k=0的兩個根,且a2k-1≤a2k(k=1,2,3,…).
(I)求a1,a3,a5,a7及a2n(n≥4)(不必證明);
(Ⅱ)求數(shù)列{an}的前2n項和S2n

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知數(shù)列{an}滿足:a1=,a2=,an+1=2an-an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1<0,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項和為Sn
(Ⅰ)求證:數(shù){bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}是單調(diào)遞增數(shù)列;
(Ⅲ)若當且僅當n=3時,Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

科目: 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設(shè)數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案