相關(guān)習(xí)題
 0  99853  99861  99867  99871  99877  99879  99883  99889  99891  99897  99903  99907  99909  99913  99919  99921  99927  99931  99933  99937  99939  99943  99945  99947  99948  99949  99951  99952  99953  99955  99957  99961  99963  99967  99969  99973  99979  99981  99987  99991  99993  99997  100003  100009  100011  100017  100021  100023  100029  100033  100039  100047  266669 

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若x1滿足2x+2x=5,x2滿足2x+2log2(x-1)=5,x1+x2=( )
A.
B.3
C.
D.4

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

當(dāng)0<x<1時,的大小關(guān)系是   

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

函數(shù)f(x)在(-∞,+∞)上是奇函數(shù),當(dāng)x∈(-∞,0]時f(x)=x(x-1),則當(dāng)x∈(0,+∞)時,f(x)=   

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知f(x)是R上的偶函數(shù),且在(-∞,0)上是減函數(shù),則不等式f(x)≤f(3)的解集是   

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若函數(shù)f(x)=ax-x-a(a>0,且a≠1)有兩個零點(diǎn),則實(shí)數(shù)a的取值范圍是   

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知集合A=
(1)當(dāng)m=3時,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)(a,b為常數(shù)),且方程有兩個實(shí)根為x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心.

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)對任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y)且當(dāng)x>0,f(x)<0.又f(1)=-2.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)在區(qū)間[-3,3]上的最大值;
(3)解關(guān)于x的不等式f(ax2)-2f(x)<f(ax)+4.

查看答案和解析>>

科目: 來源:2012年云南省曲靖市宣威市高三第一次調(diào)研摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實(shí)數(shù)),滿足a-b+c=0,對于任意實(shí)數(shù)x 都有f (x)-x≥0,并且當(dāng)x∈(0,2)時,有f (x)≤
(1)求f (1)的值;
(2)證明:ac≥
(3)當(dāng)x∈[-2,2]且a+c取得最小值時,函數(shù)F(x)=f (x)-mx (m為實(shí)數(shù))是單調(diào)的,求證:m≤或m≥

查看答案和解析>>

同步練習(xí)冊答案