用一根輕質彈簧豎直懸掛一小球,小球和彈簧的受力如圖所示,下列說法正確的是( )
A.F1的施力物體是彈簧
B.F2的反作用力是F3
C.F3的施力物體是小球
D.F4的反作用力是F1
科目:高中物理 來源: 題型:閱讀理解
第一部分 力&物體的平衡
第一講 力的處理
一、矢量的運算
1、加法
表達: + = 。
名詞:為“和矢量”。
法則:平行四邊形法則。如圖1所示。
和矢量大。篶 = ,其中α為和的夾角。
和矢量方向:在、之間,和夾角β= arcsin
2、減法
表達: = - 。
名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。
法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。
差矢量大。篴 = ,其中θ為和的夾角。
差矢量的方向可以用正弦定理求得。
一條直線上的矢量運算是平行四邊形和三角形法則的特例。
例題:已知質點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內和在T內的平均加速度大小。
解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、和。
根據(jù)加速度的定義 = 得:= ,=
由于有兩處涉及矢量減法,設兩個差矢量 = - ,= - ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。
本題只關心各矢量的大小,顯然:
= = = ,且: = = , = 2=
所以:= = = ,= = = 。
(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?
答:否;不是。
3、乘法
矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質的不同。
⑴ 叉乘
表達:× =
名詞:稱“矢量的叉積”,它是一個新的矢量。
叉積的大。篶 = absinα,其中α為和的夾角。意義:的大小對應由和作成的平行四邊形的面積。
叉積的方向:垂直和確定的平面,并由右手螺旋定則確定方向,如圖4所示。
顯然,×≠×,但有:×= -×
⑵ 點乘
表達:· = c
名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。
點積的大。篶 = abcosα,其中α為和的夾角。
二、共點力的合成
1、平行四邊形法則與矢量表達式
2、一般平行四邊形的合力與分力的求法
余弦定理(或分割成RtΔ)解合力的大小
正弦定理解方向
三、力的分解
1、按效果分解
2、按需要——正交分解
第二講 物體的平衡
一、共點力平衡
1、特征:質心無加速度。
2、條件:Σ = 0 ,或 = 0 , = 0
例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。
解說:直接用三力共點的知識解題,幾何關系比較簡單。
答案:距棒的左端L/4處。
(學生活動)思考:放在斜面上的均質長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?
解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。
答:不會。
二、轉動平衡
1、特征:物體無轉動加速度。
2、條件:Σ= 0 ,或ΣM+ =ΣM-
如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。
3、非共點力的合成
大小和方向:遵從一條直線矢量合成法則。
作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。
第三講 習題課
1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉動的夾板(β不定),夾板和斜面夾著一個質量為m的光滑均質球體,試求:β取何值時,夾板對球的彈力最小。
解說:法一,平行四邊形動態(tài)處理。
對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。
由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。
顯然,隨著β增大,N1單調減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。
法二,函數(shù)法。
看圖8的中間圖,對這個三角形用正弦定理,有:
= ,即:N2 = ,β在0到180°之間取值,N2的極值討論是很容易的。
答案:當β= 90°時,甲板的彈力最小。
2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?
解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。
靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。
水平方向合力為零,得:支持力N持續(xù)增大。
物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。
對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。
答案:B 。
3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。
解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。
分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。
(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:
⑴
由胡克定律:F = k(- R) ⑵
幾何關系:= 2Rcosθ ⑶
解以上三式即可。
答案:arccos 。
(學生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?
答:變小;不變。
(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?
解:和上題完全相同。
答:T變小,N不變。
4、如圖14所示,一個半徑為R的非均質圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。
解說:練習三力共點的應用。
根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。
答案:R 。
(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?
解:三力共點知識應用。
答: 。
4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?
解說:本題考查正弦定理、或力矩平衡解靜力學問題。
對兩球進行受力分析,并進行矢量平移,如圖16所示。
首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。
而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。
對左邊的矢量三角形用正弦定理,有:
= ①
同理,對右邊的矢量三角形,有: = ②
解①②兩式即可。
答案:1 : 。
(學生活動)思考:解本題是否還有其它的方法?
答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。
應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?
解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。
答:2 :3 。
5、如圖17所示,一個半徑為R的均質金屬球上固定著一根長為L的輕質細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?
解說:這是一個典型的力矩平衡的例題。
以球和桿為對象,研究其對轉軸O的轉動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:
f R + N(R + L)= G(R + L) ①
球和板已相對滑動,故:f = μN ②
解①②可得:f =
再看木板的平衡,F(xiàn) = f 。
同理,木板插進去時,球體和木板之間的摩擦f′= = F′。
答案: 。
第四講 摩擦角及其它
一、摩擦角
1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。
2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。
此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。
3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。
二、隔離法與整體法
1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。
在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。
2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。
應用整體法時應注意“系統(tǒng)”、“內力”和“外力”的涵義。
三、應用
1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。
解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學生留下深刻印象。
法一,正交分解。(學生分析受力→列方程→得結果。)
法二,用摩擦角解題。
引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。
再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。
最后,μ= tgφm 。
答案:0.268 。
(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?
解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。
答:Gsin15°(其中G為物體的重量)。
2、如圖19所示,質量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。
解說:
本題旨在顯示整體法的解題的優(yōu)越性。
法一,隔離法。簡要介紹……
法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。
做整體的受力分析時,內力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。
答案:26.0N 。
(學生活動)地面給斜面體的支持力是多少?
解:略。
答:135N 。
應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。
解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。
法一:隔離法。
由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ
對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。
對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ
Fy + mgcosθ= N
且 f = μN = Ntgθ
綜合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
對斜面體,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化簡得:Fy = mgcosθ ②
②代入①可得:Fx = 3mgsinθ
最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。
答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內部。
法二:引入摩擦角和整體法觀念。
仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。
先看整體的水平方向平衡,有:Fcos(θ- α) = P ⑴
再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構成一個三角形,如圖22所示。
在圖22右邊的矢量三角形中,有: = = ⑵
注意:φ= arctgμ= arctg(tgθ) = θ ⑶
解⑴⑵⑶式可得F和α的值。
查看答案和解析>>
科目:高中物理 來源: 題型:閱讀理解
第二部分 牛頓運動定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點
a、矢量性
b、獨立作用性:ΣF → a ,ΣFx → ax …
c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點
a、同性質(但不同物體)
b、等時效(同增同減)
c、無條件(與運動狀態(tài)、空間選擇無關)
第二講 牛頓定律的應用
一、牛頓第一、第二定律的應用
單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。
應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達的驅動下,皮帶運輸機上方的皮帶以恒定的速度向右運動。現(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中( )
A、一段時間內,工件將在滑動摩擦力作用下,對地做加速運動
B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。
較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會出現(xiàn)“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調節(jié)的特殊“物體”)
此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出
只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)
進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應用
應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。
在難度方面,“瞬時性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)
進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應用,但數(shù)學處理復雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。
解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。
正交坐標的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨立解T值是成功的。結果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學生活動:用正交分解法解本節(jié)第2題“進階練習2”
進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?
結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時調節(jié)”這一難點(從即將開始的運動來反推)。
知識點,牛頓第二定律的瞬時性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應用:如圖11所示,吊籃P掛在天花板上,與吊籃質量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應用
要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內力”和“外力”等概念,并適時地運用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。
補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個長為L的均質直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結論又如何?
解:分兩種情況,(1)能拉動;(2)不能拉動。
第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。
第(2)情況可設棒的總質量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動,結論不變。
若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。
應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內壁有壓力?
解:略。
答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內壁均無壓力,若斜面粗糙,對斜面上方的內壁有壓力。
2、如圖15所示,三個物體質量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質量也不計,為使三個物體無相對滑動,水平推力F應為多少?
解說:
此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。
答案:F = 。
思考:若將質量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。
解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′= 。
3、一根質量為M的木棒,上端用細繩系在天花板上,棒上有一質量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、
1、如圖18所示,一質量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。
(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。
位移矢量示意圖如圖19所示。根據(jù)運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。
(學生活動)這兩個加速度矢量有什么關系?
沿斜面方向、垂直斜面方向建x 、y坐標,可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學生活動)思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。
解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。
(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設全程時間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進動力學在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動力學方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習題。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com