解答:解:
(1)導(dǎo)體棒即將離開(kāi)Ⅰ時(shí),金屬框受到的安培力沿斜面向下,對(duì)金屬框由平衡條件得
f
max=Mgsin30°+F
A1max
解得,F(xiàn)
A1max=2N
導(dǎo)體棒受安培力:F
A1max=
,解得υ
1=1m/s
導(dǎo)體棒剛進(jìn)入Ⅱ時(shí),金屬框受到的安培力沿斜面向上,對(duì)金屬框由平衡條件得
f
max′=F
A2max-Mgsin30°
解得,F(xiàn)
A2max=12N
導(dǎo)體棒受安培力:F
A2max=
代入解得,υ
2=6m/s
導(dǎo)體棒在兩磁場(chǎng)邊界之間運(yùn)動(dòng)時(shí),mgsin30°=ma,
解得,a=5m/s
2
則有d=
=3.5m
(2)導(dǎo)體棒離開(kāi)Ⅰ之前,速度至少要達(dá)到υ
1=1m/s.設(shè)此時(shí)導(dǎo)體棒在磁場(chǎng)Ⅰ中已經(jīng)達(dá)到最大速度做勻速運(yùn)動(dòng),
由平衡條件得:m
1gsin30°=F
A1max,求得m
1=0.4kg
欲使金屬框架不動(dòng),導(dǎo)體棒剛進(jìn)入Ⅱ后電流不再增大,做勻速運(yùn)動(dòng).由平衡條件得:
m
2gsin30°=F
A2max,求得m
2=2.4kg
即導(dǎo)體棒的質(zhì)量應(yīng)為:0.4kg<m<2.4kg
(3)導(dǎo)體棒在磁場(chǎng)Ⅰ中運(yùn)動(dòng)時(shí),由牛頓第二定律得:mgsin30°-F
A1=ma
其中,
FA1=導(dǎo)體棒做加速度減小的加速運(yùn)動(dòng),最大速度為1m/s.安培力在逐漸增大,最小值是0,最大值為2N.
此過(guò)程中對(duì)金屬棒,由平衡條件得f=Mgsin30°+F
A1′
F
A1′=F
A1可知金屬框與斜面的摩擦力范圍為:5N~7N.
導(dǎo)體棒在無(wú)場(chǎng)區(qū)時(shí),金屬框與斜面的摩擦力恒為5N.
導(dǎo)體棒在磁場(chǎng)Ⅱ中運(yùn)動(dòng)時(shí),由牛頓第二定律得:F
A2-mgsin30°=ma
又
FA2=導(dǎo)體棒做加速度減小的減速運(yùn)動(dòng),最大速度為6m/s.當(dāng)a=0時(shí),速度最小,以后做勻速運(yùn)動(dòng),此時(shí)速度為4m/s.安培力在逐漸減小,最小值是8N,最大值為12N.
此過(guò)程中對(duì)金屬棒,由平衡條件得:f′=F
A2-Mgsin30°,F(xiàn)
A2′=F
A2可知金屬框與斜面的摩擦力范圍為:3N~7N.
綜上所述,金屬框受到的最小摩擦力為3N.
答:
(1)磁場(chǎng)Ⅰ、Ⅱ邊界間的距離d=3.5m;
(2)欲使框架一直靜止不動(dòng),導(dǎo)體棒ab的質(zhì)量應(yīng)該滿(mǎn)足的條件是0.4kg<m<2.4kg;
(3)質(zhì)量為1.6kg的導(dǎo)體棒ab在運(yùn)動(dòng)的全過(guò)程中,金屬框架受到的最小摩擦力為3N.
點(diǎn)評(píng):本題分析物體的受力至關(guān)重要,安培力的經(jīng)驗(yàn)公式
FA1=經(jīng)常用到,在推導(dǎo)的基礎(chǔ)上記住,對(duì)分析導(dǎo)體的運(yùn)動(dòng)作用很大.