如圖1,在光滑水平長(zhǎng)直軌道上,放著一個(gè)靜止的彈簧振子,它由一輕彈簧兩端各聯(lián)結(jié)一個(gè)小球構(gòu)成,兩小球質(zhì)量相等,F(xiàn)突然給左端小球一個(gè)向右的速度u0,求彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí),每個(gè)小球的速度。
⑵如圖2,將N個(gè)這樣的振子放在該軌道上。最左邊的振子1被壓縮至彈簧為某一長(zhǎng)度后鎖定,靜止在適當(dāng)位置上,這時(shí)它的彈性勢(shì)能為E0。其余各振子間都有一定的距離,F(xiàn)解除對(duì)振子1的鎖定,任其自由運(yùn)動(dòng),當(dāng)它第一次恢復(fù)到自然長(zhǎng)度時(shí),剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個(gè)振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí)與下一個(gè)振子相碰。求所有可能的碰撞都發(fā)生后,每個(gè)振子彈性勢(shì)能的最大值。已知本題中兩球發(fā)生碰撞時(shí),速度交換,即一球碰后的速度等于另一球碰前的速度。
解:(1)設(shè)小球質(zhì)量為m,以u(píng)1、u2分別表示彈簧恢復(fù)到自然長(zhǎng)度時(shí)左右兩端小球的速度。由動(dòng)量守恒和能量守恒定律有 mu1+mu2=mu0 (以 向右為速度正方向) 解得  u1=u0,,u2=0或u1=0,u2=u0 由于振子從初始狀態(tài)到彈簧恢復(fù)到自然長(zhǎng)度的過(guò)程中,彈簧一直是壓縮狀態(tài),彈性力使左端持續(xù)減速,使右端小球持續(xù)加速,因此應(yīng)該。簎1=0,u2=u0 (2)以v1、分別表示振子1解除鎖定后彈簧恢復(fù)到自然長(zhǎng)度時(shí)左右兩小球的速度,規(guī)定向右為速度的正方向。由動(dòng)量守恒和能量守恒定律有 mv1+m=0  解得  v1==-v1=-,= 在這一過(guò)程中,彈簧一直壓縮狀態(tài),彈性力使左端小球向左加速,右端小球向右加速,故應(yīng)取解: v1=-,= 振子1與振子2碰撞后,由于交換速度,振子1右端小球速度變?yōu)?,左端小球速度仍為v1,此后兩小球都向左運(yùn)動(dòng)。當(dāng)它們向左的速度相同時(shí),彈簧被拉伸至最長(zhǎng),彈性勢(shì)能最大。設(shè)此速度為v10,根據(jù)動(dòng)量守恒有2mv10=mv1用E1表示最大彈性勢(shì)能,由能量守恒有+E1 解得E1E0
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:

(1)如圖1,在光滑水平長(zhǎng)直軌道上,放著一個(gè)靜止的彈簧振子,它由一輕彈簧兩端各連接一個(gè)小球構(gòu)成,兩小球質(zhì)量相等.現(xiàn)突然給左端小球一個(gè)向右的速度u0,求彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí),每個(gè)小球的速度.
(2)如圖2,將N個(gè)這樣的振子放在該軌道上,最左邊的振子1被壓縮至彈簧為某一長(zhǎng)度后鎖定,靜止在適當(dāng)位置上,這時(shí)它的彈性勢(shì)能為E0.其余各振子間都有一定的距離,現(xiàn)解除對(duì)振子1的鎖定,任其自由運(yùn)動(dòng),當(dāng)它第一次恢復(fù)到自然長(zhǎng)度時(shí),剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個(gè)振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí)與下一個(gè)振子相碰.求所有可能的碰撞都發(fā)生后,每個(gè)振子彈性勢(shì)能的最大值.已知本題中兩球發(fā)生碰撞時(shí),速度交換,即一球碰后的速度等于另一球碰前的速度.
精英家教網(wǎng)

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

(03年江蘇卷)(13分)(1)如圖1,在光滑水平長(zhǎng)直軌道上,放著一個(gè)靜止的彈簧振子,它由一輕彈簧兩端各聯(lián)結(jié)一個(gè)小球構(gòu)成,兩小球質(zhì)量相等。現(xiàn)突然給左端小球一個(gè)向右的速度u0,求彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí),每個(gè)小球的速度。

(2)如圖2,將N個(gè)這樣的振子放在該軌道上。最左邊的振子1被壓縮至彈簧為某一長(zhǎng)度后鎖定,靜止在適當(dāng)位置上,這時(shí)它的彈性勢(shì)能為E0。其余各振子間都有一定的距離。現(xiàn)解除對(duì)振子1的鎖定,任其自由運(yùn)動(dòng),當(dāng)它第一次恢復(fù)到自然長(zhǎng)度時(shí),剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個(gè)振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí)與下一個(gè)振子相碰。求所有可能的碰撞都發(fā)生后,每個(gè)振子彈性勢(shì)能的最大值。已知本題中兩球發(fā)生碰撞時(shí),速度交換,即一球碰后的速度等于另一球碰前的速度。

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

(03年江蘇卷)(13分)(1)如圖1,在光滑水平長(zhǎng)直軌道上,放著一個(gè)靜止的彈簧振子,它由一輕彈簧兩端各聯(lián)結(jié)一個(gè)小球構(gòu)成,兩小球質(zhì)量相等,F(xiàn)突然給左端小球一個(gè)向右的速度u0,求彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí),每個(gè)小球的速度。

(2)如圖2,將N個(gè)這樣的振子放在該軌道上。最左邊的振子1被壓縮至彈簧為某一長(zhǎng)度后鎖定,靜止在適當(dāng)位置上,這時(shí)它的彈性勢(shì)能為E0。其余各振子間都有一定的距離,F(xiàn)解除對(duì)振子1的鎖定,任其自由運(yùn)動(dòng),當(dāng)它第一次恢復(fù)到自然長(zhǎng)度時(shí),剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個(gè)振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí)與下一個(gè)振子相碰。求所有可能的碰撞都發(fā)生后,每個(gè)振子彈性勢(shì)能的最大值。已知本題中兩球發(fā)生碰撞時(shí),速度交換,即一球碰后的速度等于另一球碰前的速度。

     

查看答案和解析>>

科目:高中物理 來(lái)源:江蘇 題型:問(wèn)答題

(1)如圖1,在光滑水平長(zhǎng)直軌道上,放著一個(gè)靜止的彈簧振子,它由一輕彈簧兩端各連接一個(gè)小球構(gòu)成,兩小球質(zhì)量相等.現(xiàn)突然給左端小球一個(gè)向右的速度u0,求彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí),每個(gè)小球的速度.
(2)如圖2,將N個(gè)這樣的振子放在該軌道上,最左邊的振子1被壓縮至彈簧為某一長(zhǎng)度后鎖定,靜止在適當(dāng)位置上,這時(shí)它的彈性勢(shì)能為E0.其余各振子間都有一定的距離,現(xiàn)解除對(duì)振子1的鎖定,任其自由運(yùn)動(dòng),當(dāng)它第一次恢復(fù)到自然長(zhǎng)度時(shí),剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個(gè)振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí)與下一個(gè)振子相碰.求所有可能的碰撞都發(fā)生后,每個(gè)振子彈性勢(shì)能的最大值.已知本題中兩球發(fā)生碰撞時(shí),速度交換,即一球碰后的速度等于另一球碰前的速度.

精英家教網(wǎng)

查看答案和解析>>

科目:高中物理 來(lái)源:2003年江蘇省高考物理試卷(解析版) 題型:解答題

(1)如圖1,在光滑水平長(zhǎng)直軌道上,放著一個(gè)靜止的彈簧振子,它由一輕彈簧兩端各連接一個(gè)小球構(gòu)成,兩小球質(zhì)量相等.現(xiàn)突然給左端小球一個(gè)向右的速度u,求彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí),每個(gè)小球的速度.
(2)如圖2,將N個(gè)這樣的振子放在該軌道上,最左邊的振子1被壓縮至彈簧為某一長(zhǎng)度后鎖定,靜止在適當(dāng)位置上,這時(shí)它的彈性勢(shì)能為E.其余各振子間都有一定的距離,現(xiàn)解除對(duì)振子1的鎖定,任其自由運(yùn)動(dòng),當(dāng)它第一次恢復(fù)到自然長(zhǎng)度時(shí),剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個(gè)振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長(zhǎng)度時(shí)與下一個(gè)振子相碰.求所有可能的碰撞都發(fā)生后,每個(gè)振子彈性勢(shì)能的最大值.已知本題中兩球發(fā)生碰撞時(shí),速度交換,即一球碰后的速度等于另一球碰前的速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案