精英家教網 > 高中物理 > 題目詳情

如圖,一物體沿三條不同路徑由A運動到B,下列關于它們的位移與路程的說法正確的是


  1. A.
    路程一樣大
  2. B.
    位移一樣大
  3. C.
    沿AEB位移最大
  4. D.
    沿ADB位移最小
B
分析:位移是指從初位置到末位置的有向線段,位移是矢量,有大小也有方向;
路程是指物體所經過的路徑的長度,路程是標量,只有大小,沒有方向.
解答:物體沿三條不同路徑由A運動到B,經過的路線不同,它的路程也就不同,但是物體的起點和終點都相同,位移是指從初位置到末位置的有向線段,所以三次的位移是相同的,所以B正確.
故選B.
點評:本題就是對位移和路程的考查,掌握住位移和路程的概念就能夠解決了.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

某同學探究恒力做功和物體動能變化間的關系,方案如圖所示.
(1)為消除摩擦力對實驗的影響,可以使木板適當傾斜以平衡摩擦阻力,則在不掛鉤碼的情況下,下面操作正確的是
D
D

A.未連接紙帶前,放開小車,小車能由靜止開始沿木板下滑
B.未連接紙帶前,輕碰小車,小車能勻速穩(wěn)定下滑
C.放開拖著紙帶的小車,小車能由靜止開始沿木板下滑
D.放開拖著紙帶的小車,輕碰小車,小車能勻速穩(wěn)定下滑
(2)平衡摩擦力后,他想用鉤碼的重力表示小車受到的合外力,則實驗中應滿足:
鉤碼的質量遠遠小于小車的質量
鉤碼的質量遠遠小于小車的質量

(3)該同學在一條比較理想的紙帶上,從點跡清晰的某點開始記為O點,順次選取5個點,分別測量這5個點到O點之間的距離x,計算出它們與O點之間的速度平方差v2=v2-
v
2
0
,然后在坐標紙上建立△v2-x坐標系,并根據上述數據進行如圖所示的描點,請畫出△v2-x變化圖象.
(4)若測出小車質量為0.2kg,懸掛鉤碼質量為0.026kg,g=10m/s2,由△v2-x變化圖象,取x=6.00cm,小車動能增量為
0.0150
0.0150
J,恒力做功為
0.0153
0.0153
J,在誤差允許范圍內可認為二者相等.(保留三位有效數字)

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖圖甲所示用包有白紙的質量為1Kg的圓柱棒替代紙帶和重物,蘸有顏料的毛筆固定在電動機上并隨之勻速運動,當接通電源待電動機穩(wěn)定轉動后,燒斷懸掛圓柱棒的細線,圓柱棒自由下落,毛筆可在圓柱棒的紙上畫出記號,如圖乙所示是按正確順序畫出的一條紙帶,圖中O是畫出的第一個痕跡,A、B、C、D、E、F、G是依次畫出的痕跡,設毛筆接觸時不影響棒的運動,測得痕跡之間沿棒方向的距離依次為OA=20.0mm、AB=50.0mm、BC=74.0mm、CD=98.0mm、DE=122.0mm、EF=146.0mm已知電動機的銘牌上標有“1200r/min”字樣,由此驗證機械能守恒定律.
根據圖中所示的數據,可知毛筆畫下痕跡B、E兩時刻間棒的動能變化量為
2.82
2.82
J,重力勢能的變化量為
2.88
2.88
J,由此可得出的結論是
在實驗誤差范圍內物體下落機械能守恒
在實驗誤差范圍內物體下落機械能守恒
(g取9.8m/s2,結果保留三位有效數字)

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

(2010?鹽城三模)本題包括A、B、C三小題,請選定其中的兩題,并在相應的答題區(qū)域作答.若三題都做,則按A、B兩題評分.
A.(1)以下說法正確的是的
BD
BD

A、液體中的擴散現(xiàn)象是由于外界對液體作用引起的.
B、多晶體沿各個方向的物理性質表現(xiàn)為各向同性.
C、分子間距離為平衡距離時,分子間作用力為零,分子勢力能最大.
D、溫度相同的物體分子平均動能一定相同,而分子無規(guī)則運動的平均速率不一定相同.
(2)給旱區(qū)人民送水的消防車停在水平地面上,在緩慢放水的過程中,若車胎不漏氣,胎內氣體溫度不變,不計分子間作用力,則胎內
吸收
吸收
熱量(填“吸收”或“放出”),單位時間內單位面積的車胎內壁受到氣體分子平均撞擊次數不清
減少
減少
(填“增加”、“減少”或“不變”).
(3)標準狀態(tài)下氣體的摩爾體積為V0=22.4L/mol,請估算教室內空氣分子的平均間距d.設教室內的溫度為0℃,阿伏加德羅常數NA=6X1023mol-1,(要寫出必要的推算過程,計算結果保留1位有效數字).
B.
(1)北京時間2011年3月11日13時46分,在日本東北部宮城縣以東太平洋海域發(fā)生里氏9.0級地震,地震造成了重大的人員傷亡,下列說法正確的是
BC
BC

A、震源停止振動時,地震波的傳播立即停止.
B、地震波能傳播能量.
C、當地震波由海底傳播到海水中時地震波的頻率不變.
D、地震波與電磁波一樣均可以在真空中傳播.
(2)圖甲所示是一列沿X軸正方向傳播的簡諧橫波在t=0時刻的波形,質點P的振動圖象如圖乙所示,則這列波的傳播速度
2
2
m/s,質點P的振動方程為X=
8sin0.5πt
8sin0.5πt
cm.
(3)如圖丙所示,一個截面為直角三角形的玻璃磚放在水平面上,折射率n=
2
.入射光線垂直于AB邊從F點射入玻璃磚,經E點折射后到達地面上的P點,已知AE=ED=L,∠ABD=60°,試求光線從F到P所用時間?(光在真空中的速度大小為c).

C.(1)核能作為一種新能源在現(xiàn)代社會中已不可缺少,但安全是核電站面臨的非常嚴峻的問題.核泄漏中的钚(Pu)是一種具有放射性的超鈾元素,钚的危險性在于它對人體的毒性,與其他放射性元素相比钚在這方面更強,一旦侵入人體,就會潛伏人體肺部、骨骼等組織細胞中,破壞細胞基因,提高罹患癌癥的風險.已知钚的一種同位素94239Pu的半衰期為24100年,其衰變方程為94239Pu→X+24He+γ,下列有關說法正確的是
AD
AD


A、X原子核中含有143個中子.
B、100個94239Pu經過24100年后一定還剩余50個.
C、由于衰變時釋放巨大能量,根據E=mC2,衰變過程總質量增加.
D、衰變發(fā)出的γ、放射線是波長很短的光子,具有很強的穿透能力.
(2)氫原子彈的光譜在可見光范圍內有四條譜線,其中在靛紫色區(qū)內的一條是處于量子數n=4的能級氫原子躍遷到n=2的能級發(fā)出的,氫原子的能級如圖所示,已知普朗克恒量h=6.63×10-34J?s,則該條譜線光子的能量為
2.55
2.55
eV,該條譜線光子的頻率為
6.15×1014
6.15×1014
Hz.(結果保留3位有效數字)
(3)已知金屬銣的極限頻率為5.15×1014Hz,現(xiàn)用波長為5.0×10-7m的一束光照射金屬銣,能否使金屬銣發(fā)生光電效應?若能,請算出逸出光電子的最大初動能.(結果保留2位有效數字)

查看答案和解析>>

科目:高中物理 來源:廣東省中山一中2012屆高三第二次統(tǒng)測物理試題 題型:058

(Ⅰ)某校科技興趣小組設計了如圖所示的裝置,探究物體沿斜面下滑是否做勻變速直線運動.

1)實驗時,讓滑塊從不同高度由靜止沿斜面下滑,并同時打開裝置中的閥門,使水箱中的水流到量筒中;當滑塊碰到擋板的同時關閉閥門(整個過程中水流可視為均勻穩(wěn)定的).該實驗探究方案是利用量筒中收集的水量來測量________的.

2)下表是該小組測得的有關數據,其中 s為滑塊從斜面的不同高度由靜止釋放后沿斜面下滑的距離,V為相應過程中量筒中收集的水量.分析表中數據,發(fā)現(xiàn)________,說明滑塊沿斜面下滑是做勻變速直線運動.

3)本實驗誤差的主要來源有:距離測量的不準確,還可能來源于________.(只要求寫出一種)

(Ⅱ).物理小組測量滑塊與木板之間的動摩擦因數.實驗裝置如圖,一表面粗糙的木板固定在水平桌面上,一端裝有定滑輪;木板上有一滑塊,其一端與電磁打點計時器的紙帶相連,另一端通過跨過定滑輪的細線與托盤連接.打點計時器使用的交流電源的頻率為50 Hz.開始實驗時,在托盤中放入適量砝碼,滑塊開始做勻加速運動,在紙帶上打出一系列小點.

1)下圖給出的是實驗中獲取的一條紙帶的一部分:0、1、2、3、4、5、6、7是計數點,每相鄰兩計數點間還有4個打點(圖中未標出),計數點間的距離如圖所示.根據圖中數據計算的加速度a=________(保留三位有效數字).

2)為測量動摩擦因數,下列物理量中還應測量的有________.(填入所選物理量前的字母)

A、木板的長度1

B、木板的質量m1

C、滑塊的質量m2

D、托盤和砝碼的總質量m3

E、滑塊運動的時間t

3)滑塊與木板間的動摩擦因數μ=________(用被測物理量的字母表示,重力加速度為g).與真實值相比,測量的動摩擦因數________(填“偏大”或“偏小”).寫出支持你的看法的一個論據:________

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第二部分  牛頓運動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點

a、矢量性

b、獨立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點

a、同性質(但不同物體)

b、等時效(同增同減)

c、無條件(與運動狀態(tài)、空間選擇無關)

第二講 牛頓定律的應用

一、牛頓第一、第二定律的應用

單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達的驅動下,皮帶運輸機上方的皮帶以恒定的速度向右運動,F(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中(      

A、一段時間內,工件將在滑動摩擦力作用下,對地做加速運動

B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現(xiàn)“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調節(jié)的特殊“物體”)

此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出

只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)

進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應用

應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據“矢量性”定合力方向  牛頓第二定律應用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)

進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應用,但數學處理復雜了一些(正弦定理解三角形)。

分析小球受力后,根據“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當力的個數較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。

正交坐標的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。

根據獨立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨立解T值是成功的。結果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學生活動:用正交分解法解本節(jié)第2題“進階練習2”

進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨立作用性原理的經典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?

結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調節(jié)”這一難點(從即將開始的運動來反推)。

知識點,牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應用:如圖11所示,吊籃P掛在天花板上,與吊籃質量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應用

要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內力”和“外力”等概念,并適時地運用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。

第(2)情況可設棒的總質量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。

應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內壁均無壓力,若斜面粗糙,對斜面上方的內壁有壓力。

2、如圖15所示,三個物體質量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質量也不計,為使三個物體無相對滑動,水平推力F應為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。

答案:F =  。

思考:若將質量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當的F′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′=  。

3、一根質量為M的木棒,上端用細繩系在天花板上,棒上有一質量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。

法二,“新整體法”。

據Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當系統(tǒng)中各個體的加速度不相等時,經典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、

1、如圖18所示,一質量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。

(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。

位移矢量示意圖如圖19所示。根據運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。

(學生活動)這兩個加速度矢量有什么關系?

沿斜面方向、垂直斜面方向建x 、y坐標,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。

(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進動力學在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習題。

查看答案和解析>>

同步練習冊答案