5.如圖甲所示,MN、PQ是固定于同一水平面內(nèi)相互平行的粗糙長直導(dǎo)軌,間距L=2.0m,R是連在導(dǎo)軌一端的電阻,質(zhì)量m=2.0Kg的導(dǎo)體棒ab垂直跨在導(dǎo)軌上,電壓傳感器(內(nèi)阻很大,相當(dāng)于理想電壓表)與這部分裝置相連.導(dǎo)軌所在空間有磁感應(yīng)強度B=0.50T、方向豎直向下的勻強磁場.從t=0開始對導(dǎo)體棒ab施加一個水平向左的拉力,使其由靜止開始沿導(dǎo)軌向左運動.電壓傳感器測出R兩端的電壓隨時間變化的圖線如圖乙所示,其中OA、BC段是直線,AB之間是曲線,且BC段平行于橫軸.已知從2.4s起拉力的功率P=18W保持不變.導(dǎo)軌和導(dǎo)體棒ab的電阻均可忽略不計,導(dǎo)體棒ab在運動過程中始終與導(dǎo)軌垂直,且接觸良好.不計電壓傳感器對電路的影響.g取10m/s2.求:

(1)4.4s時導(dǎo)體棒產(chǎn)生的感應(yīng)電動勢大小、導(dǎo)體棒的速度大;
(2)在2.4s至4.4s的時間內(nèi),該裝置總共產(chǎn)生的熱量Q;
(3)導(dǎo)體棒ab與導(dǎo)軌間的動摩擦因數(shù)μ和電阻R的值.

分析 (1)當(dāng)感應(yīng)電動勢最大時,速度最大,從乙圖中讀出最大電壓,根據(jù)E=BLv即可求解;
(2)根據(jù)E=BLv可知在0~2.4s內(nèi)導(dǎo)體棒做勻加速直線運動,求出t1=2.4s時導(dǎo)體棒的速度,在2.4s~4.4s時間內(nèi),根據(jù)功能原理即可求解;
(3)求出導(dǎo)體棒做勻加速運動的加速度,根據(jù)P=Fv,求出t=2.4s和4.4s時的拉力,根據(jù)牛頓第二定律、歐姆定律及安培力公式,聯(lián)立方向即可求解.

解答 解:(1)設(shè)△t=4.4-2.4=2s,t=2.4s,
從乙圖可知,t=4.4s時R兩端的電壓達(dá)到最大,Um=2.0V,
由于導(dǎo)體棒內(nèi)阻不計,故Um=Em=2.0V,
因為Em=BLvm,所以vm=2.0m/s…①
(2)因為E=U=BLv,而B、L為常數(shù),所以,在0~2.4s內(nèi)導(dǎo)體棒做勻加速直線運動.
設(shè)導(dǎo)體棒在這段時間內(nèi)加速度為a,t1=2.4s時導(dǎo)體棒的速度為v1,由乙圖可知此時電壓U1=1.8V.
因為   E1=U1=BLv1…②
所以v1=1.8m/s     
在2.4s~4.4s時間內(nèi),根據(jù)功能原理:$\frac{1}{2}mv_1^2+P△t=\frac{1}{2}mv_m^2+Q$…③
得:Q=35.24J   
(3)導(dǎo)體棒做勻加速運動的加速度v1=at1,得a=0.75m/s2,
當(dāng)t=2.4s時,設(shè)拉力為F1,則有${F_1}=\frac{P}{v_1}=10N$,
同理,設(shè)t=4.4s時拉力為F2,則有${F_2}=\frac{P}{v_m}=9N$,
根據(jù)牛頓第二定律有:F1-μmg-Ff1=ma…④
F2-μmg-Ff2=0…⑤
F安1=BI1L=BL$\frac{{U}_{1}}{R}$…⑥
F安2=BI2L=BL$\frac{{U}_{2}}{R}$…⑦
由④⑤⑥⑦代入數(shù)據(jù)可求得:R=0.4Ω,μ=0.2;
答:(1)4.4s時導(dǎo)體棒產(chǎn)生的感應(yīng)電動勢大小為2.0V、導(dǎo)體棒的速度大小為2.0m/s;
(2)在2.4s至4.4s的時間內(nèi),該裝置總共產(chǎn)生的熱量Q為35.24J;
(3)導(dǎo)體棒ab與導(dǎo)軌間的動摩擦因數(shù)μ為0.2,電阻R的值為0.4Ω.

點評 本題是電磁感應(yīng)與電路、力學(xué)知識的綜合,首先要識別電路的結(jié)構(gòu),把握路端電壓與電動勢的關(guān)系,而電動勢是聯(lián)系電路與電磁感應(yīng)的橋梁,可得到速度的表達(dá)式;安培力是聯(lián)系力與電磁感應(yīng)的紐帶,難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:填空題

15.如圖所示為演示交流電產(chǎn)生的裝置圖,如圖時刻穿過線圈的磁通量最。ㄌ睢白畲蠡蜃钚 保┚圈產(chǎn)生的感應(yīng)電動勢最大(填“最大或最小”)

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

16.磁懸浮列車的運行原理可簡化為如圖所示的模型,在水平面上,兩根平行直導(dǎo)軌間有豎直方向且等距離分布的勻強磁場B1和B2,導(dǎo)軌上有金屬框abcd,金屬框?qū)挾萢b與磁場B1、B2寬度相同.當(dāng)勻強磁場B1和B2同時以速度v0沿直導(dǎo)軌向右做勻速運動時,金屬框也會沿直導(dǎo)軌運動,設(shè)直導(dǎo)軌間距為L,B1=B2=B,金屬框的電阻為R,金屬框運動時受到的阻力恒為F,則

(1)金屬框受到磁場的總安培力多大?
(2)金屬框運動的最大速度為多少?
(3)金屬框內(nèi)的焦耳熱功率多大?磁場提供能量的功率多大?

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

13.如圖所示,豎直固定的足夠長的光滑金屬導(dǎo)軌MN、PQ,相距L=0.2m,其電阻不計,完全相同的兩根金屬棒ab、cd垂直放置,每根金屬棒兩端都與導(dǎo)軌始終良好接觸.已知兩棒的質(zhì)量均為m=10-2kg,電阻均為R=0.2Ω,棒cd放置在水平絕緣平臺上,整個裝置處于垂直于導(dǎo)軌平面向里的勻強磁場中,磁感應(yīng)強度B=1.0T.棒ab在豎直向上的恒定拉力F作用下由靜止開始向上運動,當(dāng)ab棒運動x=0.1m時達(dá)到最大速度vm,此時cd棒對絕緣平臺的壓力恰好為零.(g取l0m/s2)求:
(1)ab棒的最大速度vm;
(2)ab棒由靜止到最大速度過程中通過ab棒的電荷量q;
(3)ab棒由靜止到最大速度過程中回路產(chǎn)生的焦耳熱Q.

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

20.如圖所示,金屬導(dǎo)軌MN和PQ平行,它們相距0.6m,勻強磁場B=1T,當(dāng)ab棒以速度V勻速滑動時,伏特表上的示數(shù)為3V,求:金屬棒運動的速度.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

10.某同學(xué)在學(xué)習(xí)中記錄了一些與地球、月球有關(guān)的數(shù)據(jù)資料如表中所示,利用這些數(shù)據(jù)來計算地球表面與月球表面之間的距離s,則下列運算公式中錯誤的是(  )
地球半徑R=6400km
月球半徑r=1740km
地球表面重力加速度g0=9.80m/s2
月球表面重力加速度g′=1.56m/s2
月球繞地球轉(zhuǎn)動的線速度v=1km/s
月球繞地球轉(zhuǎn)動周期T=27.3天
光速c=2.998×105 km/s
用激光器向月球表面發(fā)射激光光束,經(jīng)過約t=2.565s接收到從月球表面反射回來的激光信號
A.$\frac{v2}{g′}$-R-rB.$\frac{vT}{2π}$-R-r
C.s=c•$\frac{t}{2}$D.$\root{3}{\frac{{g}_{0}{R}^{2}{T}^{2}}{4{π}^{2}}}$-R-r

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

17.物體做勻變速直線運動,其位移與時間的關(guān)系為x=5t+4t2,則( 。
A.物體的初速度是5m/sB.物體第2s內(nèi)的位移是17m
C.物體的加速度是8m/s2D.物體在1s末的速度為10m/s

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

14.在研究平拋運動的實驗中,某小組所用的實驗裝置和采集到的頻閃照片如圖所示,其中A球做平拋運動,B球做自由落體運動.觀察照片中A球和B球在任一時刻的高度,以及相同時間間隔內(nèi)A球在水平方向的位移,可以發(fā)現(xiàn),A球在豎直方向做自由落體運動,在水平方向做勻速直線運動.

查看答案和解析>>

科目:高中物理 來源: 題型:實驗題

15.物理興趣小組想測量滑塊和長木板之間的動摩擦因數(shù).實驗裝置如圖甲所示,一端裝有定滑輪的表面粗糙的長木板固定在水平實驗臺上,木板上有一滑塊,滑塊右端固定一個輕小動滑輪,輕繩的一端與固定在墻上的拉力傳感器相連,另一端繞過動滑輪和定滑輪,與沙桶相連.放開沙桶,滑塊在長木板上做勻加速直線運動.
實驗時,滑塊加速運動,固定在長直木板上的加速度傳感器可讀出滑塊的加速度a,拉力傳感器可讀出繩上的拉力F.逐漸往沙桶中添加沙,重復(fù)實驗.以F為縱軸、以a為橫軸,得到的圖象如圖乙所示,其直線的截距等于b、斜率等于k.重力加速度為g,忽略滑輪與繩之間的摩擦.
(1)實驗中,必要的措施是A.
A.細(xì)線必須與長木板平行
B.必須測出沙和沙桶的質(zhì)量
C.必須測出滑塊和動滑輪的質(zhì)量
D.必須保證每次都從同一位置釋放滑塊
(2)滑塊和長木板之間的動摩擦因數(shù)μ=$\frac{kg}$(如果需要測得其他物理量,要在表達(dá)式后面說明該物理量的含義).

查看答案和解析>>

同步練習(xí)冊答案