力的分解
(1)定義:求一個已知力的
 
的過程.
(2)遵循原則:
 
定則或
 
定則.
(3)分解方法:①按力產(chǎn)生的
 
分解;②正交分解.
分析:力的分解是力的合成的逆運算,是求一個力的分力的過程.同樣遵守平行四邊形定則.
解答:解:力的分解是力的合成的逆運算,同樣遵循平行四邊形定則(三角形法則):把一個已知力作為平行四邊形的對角線,那么與已知力共點的平行四邊形的兩條鄰邊就表示已知力的兩個分力.然而,如果沒有其他限制,對于同一條對角線,可以作出無數(shù)個不同的平行四邊形;
按照力產(chǎn)生的實際效果進行分解,或者正交分解.
故答案為:分力,平行四邊形,三角形,效果.
點評:考查力的分解與合成的區(qū)別,及掌握力的平行四邊形定則的應用,注意力的分解的方法.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:閱讀理解

第七部分 熱學

熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數(shù)目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結(jié)合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。

一、分子動理論

1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)

對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。

【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。

【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。

由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據(jù)空間為 v = 

而由圖不難看出,一個離子占據(jù)的空間就是小立方體的體積a3 ,

即 a3 =  = ,最后,鄰近鈉離子之間的距離l = a

【答案】3.97×10-10m 。

〖思考〗本題還有沒有其它思路?

〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結(jié)構(gòu)。)

2、物質(zhì)內(nèi)的分子永不停息地作無規(guī)則運動

固體分子在平衡位置附近做微小振動(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結(jié)果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。

無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數(shù)比率和速率對應一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關。

氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時的速率,vP == ;平均速率:所有分子速率的算術平均值, ==;方均根速率:與分子平均動能密切相關的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =  = 1.38×10-23J/K 〕

【例題2】證明理想氣體的壓強P = n,其中n為分子數(shù)密度,為氣體分子平均動能。

【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。

考查yoz平面的一個容器壁,P =            ①

設想在Δt時間內(nèi),有Nx個分子(設質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動量定理,容器壁承受的壓力

 F ==                            ②

在氣體的實際狀況中,如何尋求Nx和vx呢?

考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足

v2 =  +  + 

分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即

 =  +  +  = 3                    ③

這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則

 Nx = ·3N = na3                         ④

注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。

結(jié)合①②③④式不難證明題設結(jié)論。

〖思考〗此題有沒有更簡便的處理方法?

〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。

分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。

分子勢能和動能的總和稱為物體的內(nèi)能。

二、熱現(xiàn)象和基本熱力學定律

1、平衡態(tài)、狀態(tài)參量

a、凡是與溫度有關的現(xiàn)象均稱為熱現(xiàn)象,熱學是研究熱現(xiàn)象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(tǒng)(簡稱系統(tǒng))。當系統(tǒng)的宏觀性質(zhì)不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。

b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。

c、熱力學第零定律(溫度存在定律):若兩個熱力學系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數(shù)值相等的狀態(tài)函數(shù),這個狀態(tài)函數(shù)被定義為溫度。

2、溫度

a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。

b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉(zhuǎn)動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質(zhì)分子平均動能的標志。

c、熱力學第三定律:熱力學零度不可能達到。(結(jié)合分子動理論的觀點2和溫度的微觀解釋很好理解。)

3、熱力學過程

a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = K

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運算

1、加法

表達: +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大小:c =  ,其中α為的夾角。

和矢量方向:、之間,和夾角β= arcsin

2、減法

表達: =  

名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。

差矢量大。篴 =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運算是平行四邊形和三角形法則的特例。

例題:已知質(zhì)點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。

解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、

根據(jù)加速度的定義 得:,

由于有兩處涉及矢量減法,設兩個差矢量  , ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關心各矢量的大小,顯然:

 =  =  =  ,且: =   = 2

所以: =  =  , =  =  

(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質(zhì)的不同。

⑴ 叉乘

表達:× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大小:c = absinα,其中α為的夾角。意義:的大小對應由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點乘

表達:· = c

名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。

點積的大。篶 = abcosα,其中α為的夾角。

二、共點力的合成

1、平行四邊形法則與矢量表達式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點力平衡

1、特征:質(zhì)心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。

解說:直接用三力共點的知識解題,幾何關系比較簡單。

答案:距棒的左端L/4處。

(學生活動)思考:放在斜面上的均質(zhì)長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。

答:不會。

二、轉(zhuǎn)動平衡

1、特征:物體無轉(zhuǎn)動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。

第三講 習題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構(gòu)成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數(shù)法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。

靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。

對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變小;不變。

(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習三力共點的應用。

根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點知識應用。

答: 。

4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學問題。

對兩球進行受力分析,并進行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F(xiàn) = f 。

同理,木板插進去時,球體和木板之間的摩擦f′=  = F′。

答案: 

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。

2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。

應用整體法時應注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。

三、應用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學生留下深刻印象。

法一,正交分解。(學生分析受力→列方程→得結(jié)果。)

法二,用摩擦角解題。

引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 。

答案:0.268 。

(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構(gòu)成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第二部分  牛頓運動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點

a、矢量性

b、獨立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點

a、同性質(zhì)(但不同物體)

b、等時效(同增同減)

c、無條件(與運動狀態(tài)、空間選擇無關)

第二講 牛頓定律的應用

一、牛頓第一、第二定律的應用

單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達的驅(qū)動下,皮帶運輸機上方的皮帶以恒定的速度向右運動。現(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中(      

A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運動

B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當工件相對皮帶靜止時,它位于皮帶上A點右側(cè)的某一點

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現(xiàn)“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出

只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)

進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應用

應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結(jié)合正交分解與“獨立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)

進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應用,但數(shù)學處理復雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質(zhì)量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。

正交坐標的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當a>ctgθ時,張力T的結(jié)果會變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學生活動:用正交分解法解本節(jié)第2題“進階練習2”

進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(從即將開始的運動來反推)。

知識點,牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應用

要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結(jié)論的化簡也麻煩一些。

第(2)情況可設棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結(jié)論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。

應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質(zhì)量也不計,為使三個物體無相對滑動,水平推力F應為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。

(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。

位移矢量示意圖如圖19所示。根據(jù)運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。

(學生活動)這兩個加速度矢量有什么關系?

沿斜面方向、垂直斜面方向建x 、y坐標,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。

(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進動力學在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習題。

查看答案和解析>>

同步練習冊答案