如圖21所示,一上表面粗糙的斜面體放在光滑的水平地面上,斜面的傾角為θ。若斜面固定,另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若斜面不固定,而用一推力F作用在滑塊上,可使滑塊沿斜面勻速上滑,若同時(shí)要求斜面體靜止不動(dòng),就必須施加一個(gè)大小為P= 4mgsinθcosθ的水平推力作用于斜面體。求滿足題意的這個(gè)F的大小和方向。

解:滑塊恰好能沿斜面勻速下滑,

滑塊與斜面間的摩擦因數(shù):μ= tanθ

若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,對(duì)滑塊,如圖18-甲所示受力分析,并建立直角坐標(biāo)系(將F沿斜面.垂直斜面分解成Fx和Fy

X軸方向,根據(jù)平衡條件:Fx=f+mgsinθ-----------①(1分)

Y軸方向,根據(jù)平衡條件:Fy+mgcosθ=N-----------②(1分)

且 f = μN(yùn) = Ntanθ-----------------------------------③(1分)

①②③聯(lián)立可得:Fx =Fytanθ+ 2mgsinθ---------④(1分)

對(duì)斜面體如圖18-乙所示受力分析,并建立直角坐標(biāo)系,

X軸方向,根據(jù)平衡條件:

P = fcosθ+ Nsinθ---------------------------------⑤(1分)

即:4mgsinθcosθ=μN(yùn)cosθ+ Nsinθ

代入μ值,化簡(jiǎn)得:Fy =mgcosθ-------------------⑥(2分)

入可④得:Fx = 3mgsinθ---------------------------⑦(2分)

最后由F =

解得:F = mg -------------⑧(1分)

由tanα= 解α= arctg()--------------⑨(2分)

   (設(shè)α為F和斜面的夾角)。

   (說(shuō)明:本題有多種求解方法,根據(jù)具體方法恰當(dāng)制定評(píng)分標(biāo)準(zhǔn))

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:

某研究性學(xué)習(xí)小組在學(xué)完“測(cè)定金屬絲電阻率”實(shí)驗(yàn)后,想利用下列器材測(cè)定自來(lái)水的電阻率:

①用毫米刻度尺測(cè)量如圖甲所示的一段自來(lái)水管上兩接線柱間距離為L(zhǎng);
②用游標(biāo)卡尺測(cè)量水管內(nèi)徑為d,如圖乙所示的讀數(shù)為
21.4
21.4
mm;
③用多用電表測(cè)量?jī)山泳柱間裝滿自來(lái)水時(shí)電阻約20KΩ;
④為提高實(shí)驗(yàn)結(jié)果的準(zhǔn)確程度,電流表應(yīng)選用
A
 
1
A
 
1
,電壓表應(yīng)選用
V
 
2
V
 
2
(以上均填器材代號(hào));
⑤為了達(dá)到上述目的,某同學(xué)設(shè)計(jì)出正確的電路原理圖并按電路圖連接好實(shí)物圖如丙圖所示,接通電路后,當(dāng)調(diào)節(jié)滑動(dòng)變阻器的滑動(dòng)片時(shí),發(fā)現(xiàn)電壓表、電流表有示數(shù)但幾乎不變,請(qǐng)指出哪一根導(dǎo)線發(fā)生了斷路?
c
c
(只要填寫圖中導(dǎo)線字母代號(hào));
⑥若實(shí)驗(yàn)電路中電流表示數(shù)為I,電壓表示數(shù)為U,可求得自來(lái)水的電阻率ρ=
πd
2
 
U
4IL
πd
2
 
U
4IL
.(用以上測(cè)得的物理量符號(hào)表示)

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

某學(xué)生用電流表和電壓表測(cè)干電池的電動(dòng)勢(shì)和內(nèi)阻時(shí),所用滑動(dòng)變阻器的阻值范圍為0~20Ω,連接電路的實(shí)物圖如圖1所示.

(1)該學(xué)生接線中錯(cuò)誤的和不規(guī)范的做法是
AD
AD

A.滑動(dòng)變阻器不起變阻作用       B.電流表接線有錯(cuò)
C.電壓表量程選用不當(dāng)           D.電壓表接線不妥
(2)在方框里畫出這個(gè)實(shí)驗(yàn)的正確電路圖(電流表的內(nèi)阻較大且未知)
(3)該同學(xué)將電路按正確的電路圖連接好,檢查無(wú)誤后,閉合開關(guān),進(jìn)行實(shí)驗(yàn).某一次電表的示數(shù)如圖2所示,則電壓表的讀數(shù)為
1.2
1.2
V,電流表的讀數(shù)為
0.26
0.26
A.
(4)該同學(xué)實(shí)驗(yàn)完畢,將測(cè)量的數(shù)據(jù)反映在U-I圖上(如圖3所示),根據(jù)這一圖線,可求出電池的電動(dòng)勢(shì)E=
1.48
1.48
V,內(nèi)電阻r=
0.77
0.77
Ω.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:閱讀理解

(2008?黃岡一模)(1)如圖1是“用描跡法畫出電場(chǎng)中平面上的等勢(shì)線”的實(shí)驗(yàn)示意圖,電極A接電源負(fù)極,電極B接電源正極,a、b、c、d、e是五個(gè)基準(zhǔn)點(diǎn).當(dāng)電流從“+”接線柱流人電流表時(shí),指針向“+”接線柱一側(cè)偏轉(zhuǎn);當(dāng)電流從“-”接線柱流人電流表時(shí),指針向“-”接線柱一側(cè)偏轉(zhuǎn)在實(shí)驗(yàn)時(shí),探針I(yè)接觸基準(zhǔn)點(diǎn)d,另一探針Ⅱ接觸探測(cè)點(diǎn)p(pd連線垂直于AB連線),靈敏電流計(jì)指針向“-”接線柱一側(cè)偏轉(zhuǎn),為盡快探測(cè)到與d點(diǎn)電勢(shì)相等的點(diǎn),探針Ⅱ由p點(diǎn)
D
D

A.向上移動(dòng)    B.向下移動(dòng)    C.向左移動(dòng)    D.向右移動(dòng)

(2)某同學(xué)看到一只鳥落在樹枝上的P處時(shí),鳥隨樹枝上下振動(dòng).該同學(xué)用秒表測(cè)出完成30次全振動(dòng)所用的時(shí)間為34.0s,他猜想一定次數(shù)的振動(dòng)時(shí)間可能與鳥的質(zhì)量成正比,也許利用這一猜想可以測(cè)出鳥的質(zhì)量.于是他想通過(guò)實(shí)驗(yàn)來(lái)驗(yàn)證這種猜想井算出這只鳥的質(zhì)量該同學(xué)采用了如下方法進(jìn)行探究:在如圖2所示的樹枝上的P處懸掛不同質(zhì)量的砝碼,并分別測(cè)出砝碼30次全振動(dòng)所用的時(shí)間,測(cè)量數(shù)據(jù)記錄如下表
砝碼質(zhì)量m/g 100 200 300 400 500
時(shí)間t/s 21.2 30.0 36.7 42.4 47.4
此同學(xué)根據(jù)測(cè)量數(shù)據(jù)作出了m-t圖象如圖所示

下面請(qǐng)你來(lái)幫助他完成實(shí)驗(yàn)任務(wù),并回答相關(guān)問(wèn)題:
①根據(jù)這位同學(xué)作出的m-t圖象可知,他的猜想是否正確?
不正確
不正確
(填“正確”或“不正確”)
②觀察這位同學(xué)作出的m-t圖線形狀及走勢(shì),提出你對(duì)振動(dòng)時(shí)間t與砝碼質(zhì)量m間關(guān)系的假設(shè),并通過(guò)列表作出相應(yīng)的圖象,得出結(jié)論,寫出t與m間的關(guān)系式.
如果在計(jì)算或作圖時(shí)需要,可參考下面的根式表:
m 100 200 300 400 500
m
10.0 14.1 17.3 20.0 22.4
 3
m
4.6 5.8 6.7 7.4 7.9
假設(shè):
t∝
m
或 砝碼的質(zhì)量與時(shí)間的平方成正比
t∝
m
或 砝碼的質(zhì)量與時(shí)間的平方成正比
;
列表:
m
/
g
m
/
g
10.0
10.0
14.1
14.1
17.3
17.3
20.0
20.0
22.4
22.4
時(shí)間t/s
時(shí)間t/s
21.2
21.2
30.0
30.0
36.7
36.7
42.4
42.4
47.4
47.4
作圖:(畫在答題卡的坐標(biāo)紙上)
結(jié)論:
圖象是一條過(guò)原點(diǎn)的傾斜直線,說(shuō)明砝碼做30次全振動(dòng)的時(shí)間與其質(zhì)量的平方根成正比
圖象是一條過(guò)原點(diǎn)的傾斜直線,說(shuō)明砝碼做30次全振動(dòng)的時(shí)間與其質(zhì)量的平方根成正比
;
關(guān)系式:
m=0.22t2(在0.20t2-0.25t2之間均正確)
m=0.22t2(在0.20t2-0.25t2之間均正確)

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:閱讀理解

[1]在“驗(yàn)證力的平行四邊形定則”實(shí)驗(yàn)中,需要將橡皮條的一端固定在水平木板上,橡皮條的另一端系兩根細(xì)繩,細(xì)繩端帶有繩套,先用兩個(gè)彈簧秤分別勾住繩套并互成角度地拉橡皮條,把橡皮條的結(jié)點(diǎn)拉到某-位置Ο并記下該點(diǎn)的位置;再用一個(gè)彈簧秤將橡皮條結(jié)點(diǎn)拉到同一位置Ο點(diǎn).
(1)某同學(xué)認(rèn)為在此過(guò)程中必須注意以下幾項(xiàng):
A.兩根細(xì)繩必須等長(zhǎng)
B.橡皮條應(yīng)與兩繩夾角的平分線在同一直線上
C.在使用彈簧秤時(shí)要注意使彈簧秤與木板平面平行
D.在用兩個(gè)彈簧秤同時(shí)拉細(xì)繩時(shí)要注意使兩個(gè)彈簧秤的讀數(shù)相等
E.在用一個(gè)彈簧秤拉時(shí)必須將橡皮條的結(jié)點(diǎn)拉到用兩個(gè)彈簧秤同時(shí)拉細(xì)繩時(shí)記下位置
其中正確的是
 
.(填入相應(yīng)的字母)
(2)某同學(xué)在坐標(biāo)紙上畫出了如圖1所示的兩個(gè)已知力F1和F2,圖中小正方形的邊長(zhǎng)表示2N,兩力的合力用F表示,F(xiàn)1.F2與F的夾角分別為θ1和θ2,關(guān)于F1.F2與F.θ1和θ2關(guān)系正確的有:
 

精英家教網(wǎng)
A. F1=4N   B. F=12N    C.θ1=45°   D.θ1<θ2
[2]某同學(xué)想描繪一只標(biāo)稱為“2.5V,1.5W”的小燈泡的伏安特性曲線,實(shí)驗(yàn)室提供下列器材:
A.電流表A1(量程3.0A,內(nèi)阻約0.2Ω)
B.電流表A2(量程0.6A,內(nèi)阻約1Ω)
C.電壓表V1(量程3.0V,內(nèi)阻約3kΩ)
D.電壓表V2(量程15.0V,內(nèi)阻約10kΩ)
E.滑動(dòng)變阻器R1(最大阻值為5Ω,最大允許電流為2A)
F.滑動(dòng)變阻器R2(最大阻值為500Ω,最大允許電流為0.5A)
G.電源E(電動(dòng)勢(shì)3V,內(nèi)阻為0.25Ω)
H.電鍵、導(dǎo)線若干
(1)為了更好地完成實(shí)驗(yàn),應(yīng)選擇的器材為:電流表
 
,電壓表
 
,滑動(dòng)變阻器
 
;(選填器材前面的字母)
(2)請(qǐng)你在如圖2所示的方框中作出實(shí)驗(yàn)原理圖;
實(shí)驗(yàn)次數(shù) 1 2 3 4 5 6 7 8
電壓U/V 0 0.20 0.40 0.80 1.20 1.60 2.00 2.40
電流I/A 0 0.11 0.21 0.33 0.40 0.45 0.48 0.52
(3)正確連接電路后,該同學(xué)測(cè)出如下表所示的實(shí)驗(yàn)數(shù)據(jù),請(qǐng)你在圖3的坐標(biāo)紙上描出該燈泡的伏安特性曲線(如圖3所示);
(4)該同學(xué)完成實(shí)驗(yàn)后,又將本實(shí)驗(yàn)所用器材按如圖4所示連接,閉合開關(guān)后將滑動(dòng)變阻器滑片從左向右滑動(dòng),發(fā)現(xiàn)小燈泡先變暗后變亮,則小燈泡最暗時(shí)的功率約為
 
W.(結(jié)果保留兩位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:閱讀理解

第二部分  牛頓運(yùn)動(dòng)定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點(diǎn)

a、矢量性

b、獨(dú)立作用性:ΣF → a ,ΣFx → ax 

c、瞬時(shí)性。合力可突變,故加速度可突變(與之對(duì)比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測(cè)量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對(duì)于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點(diǎn)

a、同性質(zhì)(但不同物體)

b、等時(shí)效(同增同減)

c、無(wú)條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無(wú)關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨(dú)應(yīng)用牛頓第一定律的物理問(wèn)題比較少,一般是需要用其解決物理問(wèn)題中的某一個(gè)環(huán)節(jié)。

應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng)。現(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過(guò)程中(      

A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對(duì)地做加速運(yùn)動(dòng)

B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對(duì)皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)

D、工件在皮帶上有可能不存在與皮帶相對(duì)靜止的狀態(tài)

解說(shuō):B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。

較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問(wèn)題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對(duì)滑動(dòng)?因?yàn)槿耸强梢孕巫儭⒅匦目梢哉{(diào)節(jié)的特殊“物體”)

此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對(duì)靜止的過(guò)程,否則沒(méi)有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過(guò)程略,答案為5.5s)

進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問(wèn):

① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?

解說(shuō):第①問(wèn)是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。

第②問(wèn)需要我們反省這樣一個(gè)問(wèn)題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒(méi)有慣性的(沒(méi)有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長(zhǎng)!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。

在難度方面,“瞬時(shí)性”問(wèn)題相對(duì)較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說(shuō):受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對(duì)靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對(duì)象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對(duì)灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對(duì)斜面靜止。試求此時(shí)繩子的張力T 。

解說(shuō):當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對(duì)應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨(dú)立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒(méi)有意義。答:T = m 。)

學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”

進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對(duì)扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對(duì)人的靜摩擦力f 。

解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對(duì)比解題過(guò)程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。

解說(shuō):第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來(lái)反推)。

知識(shí)點(diǎn),牛頓第二定律的瞬時(shí)性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點(diǎn):在動(dòng)力學(xué)問(wèn)題中,如果遇到幾個(gè)研究對(duì)象時(shí),就會(huì)面臨如何處理對(duì)象之間的力和對(duì)象與外界之間的力問(wèn)題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過(guò)程簡(jiǎn)化,使過(guò)程的物理意義更加明晰。

對(duì)N個(gè)對(duì)象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。

補(bǔ)充:當(dāng)多個(gè)對(duì)象不具有共同的加速度時(shí),一般來(lái)講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過(guò)程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個(gè)長(zhǎng)為L(zhǎng)的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說(shuō):截取隔離對(duì)象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。

第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡(jiǎn)也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒(méi)有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動(dòng),結(jié)論不變。

若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長(zhǎng)方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒(méi)有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對(duì)盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會(huì);(2)沒(méi)有;(3)若斜面光滑,對(duì)兩內(nèi)壁均無(wú)壓力,若斜面粗糙,對(duì)斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無(wú)相對(duì)滑動(dòng),水平推力F應(yīng)為多少?

解說(shuō):

此題對(duì)象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無(wú)相對(duì)運(yùn)動(dòng)?如果沒(méi)有,說(shuō)明理由;如果有,求出這個(gè)F′的值。

解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時(shí),沒(méi)有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對(duì)棒往上爬,但要求貓對(duì)地的高度不變,則棒的加速度將是多少?

解說(shuō):法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說(shuō):本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對(duì)兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。

(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。

位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對(duì)滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對(duì)斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動(dòng))思考:如何求a1的值?

解:a1y已可以通過(guò)解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無(wú)摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對(duì)棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。

解說(shuō):這是一個(gè)比較特殊的“連接體問(wèn)題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運(yùn)動(dòng)過(guò)程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時(shí)間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡(jiǎn)單。過(guò)程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對(duì)棒的加速度a是沿棒向上的,故動(dòng)力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對(duì)位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識(shí)出版社,2002年8月第一版。

例題選講針對(duì)“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>

同步練習(xí)冊(cè)答案