電場線是畫在電場中的一條條有方向的曲線,用電場線可以形象地描述電場的強弱和方向.最早提出用電場線描述電場的物理學家是( 。
A.牛頓B.安培C.法拉第D.奧斯特
牛頓對物理學的貢獻主要在力學部分,如牛頓運動的三定律;
安培的提出的是電流在磁場中的受力大小的計算,即安培定則;
奧斯特首先發(fā)現(xiàn)載流導線的電流會產(chǎn)生作用力于磁針,使磁針改變方向;
法拉第提出用電場線描述電場的物理學家,所以C正確.
故選C.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

電場線是畫在電場中的一條條有方向的曲線,用電場線可以形象地描述電場的強弱和方向.最早提出用電場線描述電場的物理學家是(  )

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第Ⅰ卷(選擇題 共31分)

一、單項選擇題.本題共5小題,每小題3分,共計15分.每小題只有一個選項符合題意.

1. 關于科學家和他們的貢獻,下列說法中正確的是[來源:Www..com]

A.安培首先發(fā)現(xiàn)了電流的磁效應

B.伽利略認為自由落體運動是速度隨位移均勻變化的運動

C.牛頓發(fā)現(xiàn)了萬有引力定律,并計算出太陽與地球間引力的大小

D.法拉第提出了電場的觀點,說明處于電場中電荷所受到的力是電場給予的

2.如圖為一種主動式光控報警器原理圖,圖中R1R2為光敏電阻,R3R4為定值電阻.當射向光敏電阻R1R2的任何一束光線被遮擋時,都會引起警鈴發(fā)聲,則圖中虛線框內(nèi)的電路是

A.與門                  B.或門               C.或非門                  D.與非門

 


3.如圖所示的交流電路中,理想變壓器原線圈輸入電壓為U1,輸入功率為P1,輸出功率為P2,各交流電表均為理想電表.當滑動變阻器R的滑動頭向下移動時

A.燈L變亮                                    B.各個電表讀數(shù)均變大

C.因為U1不變,所以P1不變                              D.P1變大,且始終有P1= P2

4.豎直平面內(nèi)光滑圓軌道外側,一小球以某一水平速度v0A點出發(fā)沿圓軌道運動,至B點時脫離軌道,最終落在水平面上的C點,不計空氣阻力.下列說法中不正確的是

A.在B點時,小球?qū)A軌道的壓力為零

B.BC過程,小球做勻變速運動

C.在A點時,小球?qū)A軌道壓力大于其重力

D.AB過程,小球水平方向的加速度先增加后減小

5.如圖所示,水平面上放置質(zhì)量為M的三角形斜劈,斜劈頂端安裝光滑的定滑輪,細繩跨過定滑輪分別連接質(zhì)量為m1m2的物塊.m1在斜面上運動,三角形斜劈保持靜止狀態(tài).下列說法中正確的是

A.若m2向下運動,則斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速運動,則斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下運動,則斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上運動,則輕繩的拉力一定大于m2g

二、多項選擇題.本題共4小題,每小題4分,共計16分.每小題有多個選項符合題意.全部選對的得4分,選對但不全的得2分,錯選或不答的得0分.

6.木星是太陽系中最大的行星,它有眾多衛(wèi)星.觀察測出:木星繞太陽作圓周運動的半徑為r1、 周期為T1;木星的某一衛(wèi)星繞木星作圓周運動的半徑為r2、 周期為T2.已知萬有引力常量為G,則根據(jù)題中給定條件

A.能求出木星的質(zhì)量

B.能求出木星與衛(wèi)星間的萬有引力

C.能求出太陽與木星間的萬有引力

D.可以斷定

7.如圖所示,xOy坐標平面在豎直面內(nèi),x軸沿水平方向,y軸正方向豎直向上,在圖示空間內(nèi)有垂直于xOy平面的水平勻強磁場.一帶電小球從O點由靜止釋放,運動軌跡如圖中曲線.關于帶電小球的運動,下列說法中正確的是

A.OAB軌跡為半圓

B.小球運動至最低點A時速度最大,且沿水平方向

C.小球在整個運動過程中機械能守恒

D.小球在A點時受到的洛倫茲力與重力大小相等

8.如圖所示,質(zhì)量為M、長為L的木板置于光滑的水平面上,一質(zhì)量為m的滑塊放置在木板左端,滑塊與木板間滑動摩擦力大小為f,用水平的恒定拉力F作用于滑塊.當滑塊運動到木板右端時,木板在地面上移動的距離為s,滑塊速度為v1,木板速度為v2,下列結論中正確的是

A.上述過程中,F做功大小為            

B.其他條件不變的情況下,F越大,滑塊到達右端所用時間越長

C.其他條件不變的情況下,M越大,s越小

D.其他條件不變的情況下,f越大,滑塊與木板間產(chǎn)生的熱量越多

9.如圖所示,兩個固定的相同細環(huán)相距一定的距離,同軸放置,O1、O2分別為兩環(huán)的圓心,兩環(huán)分別帶有均勻分布的等量異種電荷.一帶正電的粒子從很遠處沿軸線飛來并穿過兩環(huán).則在帶電粒子運動過程中

A.在O1點粒子加速度方向向左

B.從O1O2過程粒子電勢能一直增加

C.軸線上O1點右側存在一點,粒子在該點動能最小

D.軸線上O1點右側、O2點左側都存在場強為零的點,它們關于O1、O2連線中點對稱

 


第Ⅱ卷(非選擇題 共89分)

三、簡答題:本題分必做題(第lO、11題)和選做題(第12題)兩部分,共計42分.請將解答填寫在答題卡相應的位置.

必做題

10.測定木塊與長木板之間的動摩擦因數(shù)時,采用如圖所示的裝置,圖中長木板水平固定.

(1)實驗過程中,電火花計時器應接在  ▲  (選填“直流”或“交流”)電源上.調(diào)整定滑輪高度,使  ▲ 

(2)已知重力加速度為g,測得木塊的質(zhì)量為M,砝碼盤和砝碼的總質(zhì)量為m,木塊的加速度為a,則木塊與長木板間動摩擦因數(shù)μ=  ▲ 

(3)如圖為木塊在水平木板上帶動紙帶運動打出的一條紙帶的一部分,0、1、2、3、4、5、6為計數(shù)點,相鄰兩計數(shù)點間還有4個打點未畫出.從紙帶上測出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.則木塊加速度大小a=  ▲  m/s2(保留兩位有效數(shù)字).

 


11.為了測量某電池的電動勢 E(約為3V)和內(nèi)阻 r,可供選擇的器材如下:

A.電流表G1(2mA  100Ω)             B.電流表G2(1mA  內(nèi)阻未知)

C.電阻箱R1(0~999.9Ω)                      D.電阻箱R2(0~9999Ω)

E.滑動變阻器R3(0~10Ω  1A)         F.滑動變阻器R4(0~1000Ω  10mA)

G.定值電阻R0(800Ω  0.1A)               H.待測電池

I.導線、電鍵若干

(1)采用如圖甲所示的電路,測定電流表G2的內(nèi)阻,得到電流表G1的示數(shù)I1、電流表G2的示數(shù)I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根據(jù)測量數(shù)據(jù),請在圖乙坐標中描點作出I1I2圖線.由圖得到電流表G2的內(nèi)阻等于

  ▲  Ω.

(2)在現(xiàn)有器材的條件下,測量該電池電動勢和內(nèi)阻,采用如圖丙所示的電路,圖中滑動變阻器①應該選用給定的器材中  ▲  ,電阻箱②選  ▲  (均填寫器材代號).

(3)根據(jù)圖丙所示電路,請在丁圖中用筆畫線代替導線,完成實物電路的連接.

 


12.選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應字母后的方框涂滿涂黑.如都作答,則按A、B兩小題評分.)

A.(選修模塊3-3)(12分)

(1)下列說法中正確的是  ▲ 

A.液體表面層分子間距離大于液體內(nèi)部分子間距離,液體表面存在張力

B.擴散運動就是布朗運動

C.蔗糖受潮后會粘在一起,沒有確定的幾何形狀,它是非晶體

D.對任何一類與熱現(xiàn)象有關的宏觀自然過程進行方向的說明,都可以作為熱力學第二定律的表述

(2)將1ml的純油酸加到500ml的酒精中,待均勻溶解后,用滴管取1ml油酸酒精溶液,讓其自然滴出,共200滴.現(xiàn)在讓其中一滴落到盛水的淺盤內(nèi),待油膜充分展開后,測得油膜的面積為200cm2,則估算油酸分子的大小是  ▲  m(保留一位有效數(shù)字).

(3)如圖所示,一直立的汽缸用一質(zhì)量為m的活塞封閉一定量的理想氣體,活塞橫截面積為S,汽缸內(nèi)壁光滑且缸壁是導熱的,開始活塞被固定,打開固定螺栓K,活塞下落,經(jīng)過足夠長時間后,活塞停在B點,已知AB=h,大氣壓強為p0,重力加速度為g

①求活塞停在B點時缸內(nèi)封閉氣體的壓強;

②設周圍環(huán)境溫度保持不變,求整個過程中通過缸壁傳遞的熱量Q(一定量理想氣體的內(nèi)能僅由溫度決定).

B.(選修模塊3-4)(12分)

(1)下列說法中正確的是  ▲ 

A.照相機、攝影機鏡頭表面涂有增透膜,利用了光的干涉原理

B.光照射遮擋物形成的影輪廓模糊,是光的衍射現(xiàn)象

C.太陽光是偏振光

D.為了有效地發(fā)射電磁波,應該采用長波發(fā)射

(2)甲、乙兩人站在地面上時身高都是L0, 甲、乙分別乘坐速度為0.6c和0.8cc為光速)的飛船同向運動,如圖所示.此時乙觀察到甲的身高L  ▲  L0;若甲向乙揮手,動作時間為t0,乙觀察到甲動作時間為t1,則t1  ▲  t0(均選填“>”、“ =” 或“<”).

(3)x=0的質(zhì)點在t=0時刻開始振動,產(chǎn)生的波沿x軸正方向傳播,t1=0.14s時刻波的圖象如圖所示,質(zhì)點A剛好開始振動.

①求波在介質(zhì)中的傳播速度;

②求x=4m的質(zhì)點在0.14s內(nèi)運動的路程.

   C.(選修模塊3-5)(12分)

(1)下列說法中正確的是  ▲ 

A.康普頓效應進一步證實了光的波動特性

B.為了解釋黑體輻射規(guī)律,普朗克提出電磁輻射的能量是量子化的

C.經(jīng)典物理學不能解釋原子的穩(wěn)定性和原子光譜的分立特征

D.天然放射性元素衰變的快慢與化學、物理狀態(tài)有關

(2)是不穩(wěn)定的,能自發(fā)的發(fā)生衰變.

①完成衰變反應方程    ▲ 

衰變?yōu)?img width=40 height=25 src="http://thumb.zyjl.cn/pic1/1899/wl/3/40403.gif" >,經(jīng)過  ▲  α衰變,  ▲  β衰變.

(3)1919年,盧瑟福用α粒子轟擊氮核發(fā)現(xiàn)質(zhì)子.科學研究表明其核反應過程是:α粒子轟擊靜止的氮核后形成了不穩(wěn)定的復核,復核發(fā)生衰變放出質(zhì)子,變成氧核.設α粒子質(zhì)量為m1,初速度為v0,氮核質(zhì)量為m2,質(zhì)子質(zhì)量為m0, 氧核的質(zhì)量為m3,不考慮相對論效應.

α粒子轟擊氮核形成不穩(wěn)定復核的瞬間,復核的速度為多大?

②求此過程中釋放的核能.

四、計算題:本題共3小題,共計47分.解答時請寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分,有數(shù)值計算的題,答案中必須明確寫出數(shù)值和單位.

13.如圖所示,一質(zhì)量為m的氫氣球用細繩拴在地面上,地面上空風速水平且恒為v0,球靜止時繩與水平方向夾角為α.某時刻繩突然斷裂,氫氣球飛走.已知氫氣球在空氣中運動時所受到的阻力f正比于其相對空氣的速度v,可以表示為f=kvk為已知的常數(shù)).則

(1)氫氣球受到的浮力為多大?

(2)繩斷裂瞬間,氫氣球加速度為多大?

(3)一段時間后氫氣球在空中做勻速直線運動,其水平方向上的速度與風速v0相等,求此時氣球速度大小(設空氣密度不發(fā)生變化,重力加速度為g).

 


14.如圖所示,光滑絕緣水平面上放置一均勻?qū)w制成的正方形線框abcd,線框質(zhì)量為m,電阻為R,邊長為L.有一方向豎直向下的有界磁場,磁場的磁感應強度為B,磁場區(qū)寬度大于L,左邊界與ab邊平行.線框在水平向右的拉力作用下垂直于邊界線穿過磁場區(qū).

(1)若線框以速度v勻速穿過磁場區(qū),求線框在離開磁場時ab兩點間的電勢差;

(2)若線框從靜止開始以恒定的加速度a運動,經(jīng)過t1時間ab邊開始進入磁場,求cd邊將要進入磁場時刻回路的電功率;

(3)若線框以初速度v0進入磁場,且拉力的功率恒為P0.經(jīng)過時間Tcd邊進入磁場,此過程中回路產(chǎn)生的電熱為Q.后來ab邊剛穿出磁場時,線框速度也為v0,求線框穿過磁場所用的時間t

      

15.如圖所示,有界勻強磁場的磁感應強度為B,方向垂直紙面向里,MN為其左邊界,磁場中放置一半徑為R的圓柱形金屬圓筒,圓心OMN的距離OO1=2R,圓筒軸線與磁場平行.圓筒用導線通過一個電阻r0接地,最初金屬圓筒不帶電.現(xiàn)有范圍足夠大的平行電子束以速度v0從很遠處沿垂直于左邊界MN向右射入磁場區(qū),已知電子質(zhì)量為m,電量為e

(1)若電子初速度滿足,則在最初圓筒上沒有帶電時,能夠打到圓筒上的電子對應MN邊界上O1兩側的范圍是多大?

(2)當圓筒上電量達到相對穩(wěn)定時,測量得到通過電阻r0的電流恒為I,忽略運動電子間的相互作用,求此時金屬圓筒的電勢φ和電子到達圓筒時速度v(取無窮遠處或大地電勢為零).

(3)在(2)的情況下,求金屬圓筒的發(fā)熱功率.

 


查看答案和解析>>

科目:高中物理 來源:2008-2009學年江蘇省淮安市淮陰區(qū)高二(上)期中物理試卷(解析版) 題型:選擇題

電場線是畫在電場中的一條條有方向的曲線,用電場線可以形象地描述電場的強弱和方向.最早提出用電場線描述電場的物理學家是( )
A.牛頓
B.安培
C.法拉第
D.奧斯特

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關注的是電場中更本質(zhì)的內(nèi)容,關注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內(nèi)容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內(nèi)部:E內(nèi) = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U內(nèi) = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結為以下三層含義——

a、導體內(nèi)部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內(nèi)部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(shù)(真空中ε0 =  ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr =  

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯(lián)  = +++ … +

b、并聯(lián) C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結論適用于非勻強電場。

五、電介質(zhì)的極化

1、電介質(zhì)的極化

a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)

b、電介質(zhì)的極化:當介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強均為零。

【模型分析】這是一個疊加原理應用的基本事例。

如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發(fā)的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發(fā)的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發(fā)的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U。

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結論為多少?如果這個總電量的分布不是均勻的,結論會改變嗎?

〖答〗UP =  ;結論不會改變。

〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內(nèi)任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結論的反證。

〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。

【相關應用】如圖7-9所示,球形導體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應,球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據(jù)靜電感應的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結論,其在球心形成的電勢仍可以應用定式,所以…

【答案】Uo = k - k + k 。

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式。

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構成環(huán)形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關系已經(jīng)足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關系WAB = q(UA - UB)= qUAB的基本應用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關系即可。

【答案】(1);(2)。 

【相關應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關系;第(3)問是在前兩問基礎上得出的必然結論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。

〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個球?qū)㈤_始運動起來,試求中間這個小球的最大速度。

〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則

動量關系 mv + 2m v′= 0

能量關系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 

三、電場中的導體和電介質(zhì)

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強為零的結論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內(nèi)部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內(nèi)部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側電量、A板內(nèi)側電量,B板內(nèi)側電量?、B板外側電量;(2)A板外側空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側受力·(方向相左),內(nèi)側受力·(方向向右),它們合成即可,結論為F = Q1Q2 ,排斥力!

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質(zhì)表面的極化電荷。

【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 。

場強可以根據(jù)E = 關系求解,比較常規(guī)(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導體表面接觸的介質(zhì)表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡,試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡的級數(shù),整個網(wǎng)絡A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數(shù),一般結論應適用特殊情形:令級數(shù)為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關系:++= 0

電勢關系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結合網(wǎng)絡計算和“孤島現(xiàn)象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關系:Q1′= Q3

          Q2′+ Q3′= 

電勢關系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統(tǒng)的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

同步練習冊答案