設(shè)太陽到地球與地球到月球的距離的比值為N,(N約為400)月球繞地球旋轉(zhuǎn)的周期為t天,地球繞太陽旋轉(zhuǎn)的周期為T天,利用上述數(shù)據(jù)可估算出太陽對月球與地球?qū)υ虑虻娜f有引力的比值約為( )
A.N
B.N 
C.N 
D.N 
【答案】分析:由萬有引力等于向心力,分別列出太陽與地球的引力的表達式,地球與月球的引力的表達式;兩式相比求得表示引力之比的表達式,再由圓周運動的心力由萬有引力來提供分別列出地球公轉(zhuǎn),月球公轉(zhuǎn)的表達式.進而分析求得比值.
解答:解:太陽對月球的萬有引力:F1=-------①(r指太陽到月球的距離)
 地球?qū)υ虑虻娜f有引力:F2=------②(r2指地球到月球的距離)
r1表示太陽到地球的距離,因r1=Nr2,因此在估算時可以認(rèn)為 r=r1(即近似認(rèn)為太陽到月球的距離等于太陽到地球的距離),

根據(jù)萬有引力提供向心力知,   ③
    ④
解得
.故C正確,A、B、D錯誤.
故選C.
點評:本題考查萬有引力定律.首先要根據(jù)萬有引力定律表達出太陽的地球的質(zhì)量,然后再列出太陽和地球分別對月球的萬有引力定律方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

(2009?松江區(qū)二模)設(shè)太陽到地球與地球到月球的距離的比值為N,(N約為400)月球繞地球旋轉(zhuǎn)的周期為t天,地球繞太陽旋轉(zhuǎn)的周期為T天,利用上述數(shù)據(jù)可估算出太陽對月球與地球?qū)υ虑虻娜f有引力的比值約為( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

已知太陽的質(zhì)量為M,地球的質(zhì)量為m1,月球的質(zhì)量為m2,當(dāng)發(fā)生日全食時,太陽、月亮、地球幾乎在同一直線上,且月亮位于太陽與地球中間,如圖7-2-1所示,設(shè)月亮到太陽的距離為a,地球到月亮的距離為b,則太陽對地球的引力F1和對月亮的吸引力F2的大小之比為多少?

7-2-1

查看答案和解析>>

科目:高中物理 來源: 題型:

已知太陽的質(zhì)量為M,地球的質(zhì)量為m1,月球的質(zhì)量為m2,當(dāng)發(fā)生日全食時,太陽、月亮、地球幾乎在同一直線上,且月亮位于太陽與地球中間,如圖7-2-1所示,設(shè)月亮到太陽的距離為a,地球到月亮的距離為b,則月球?qū)μ柕奈1與月球?qū)Φ厍虻奈2之比?

7-2-1

查看答案和解析>>

科目:高中物理 來源:松江區(qū)二模 題型:單選題

設(shè)太陽到地球與地球到月球的距離的比值為N,(N約為400)月球繞地球旋轉(zhuǎn)的周期為t天,地球繞太陽旋轉(zhuǎn)的周期為T天,利用上述數(shù)據(jù)可估算出太陽對月球與地球?qū)υ虑虻娜f有引力的比值約為( 。
A.N
t
T
B.N 
T
t
C.N 
t2
T2
D.N 
T2
t2

查看答案和解析>>

同步練習(xí)冊答案