已知函數(shù)f(x)=2x-
1
2|x|

(1)設(shè)集合A={x|f(x)≤
15
4
}
,B={x|x2-6x+p<0},若A∩B≠∅,求實(shí)數(shù)p的取值范圍;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
分析:(1)解不等式f(x)
15
4
得到A,令g(x)=x2-6x+p,由A∩B≠∅,得g(2)<0,解出即可;
(2)對(duì)不等式進(jìn)行等價(jià)轉(zhuǎn)化,分離出參數(shù)m后,轉(zhuǎn)化為函數(shù)最值問(wèn)題解決;
解答:解:(1)當(dāng)x≥0時(shí),f(x)≤
15
4
,即2x-
1
2x
15
4
,解得0≤x≤2;
當(dāng)x<0時(shí),f(x)
15
4
即0
15
4
成立,
綜上,f(x)
15
4
的解集為{x|x≤2},即A=(-∞,2].
設(shè)g(x)=x2-6x+p,
因?yàn)锳∩B≠∅,所以g(2)<0,即4-6×2+p<0,解得p<8,
所以實(shí)數(shù)p的取值范圍為:(-∞,8).
(2)因?yàn)閠∈[1,2],所以f(t)=2t-
1
2t
,
2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,即2t(22t-
1
22t
)+m(2t-
1
2t
)≥0
恒成立,
即(2t-
1
2t
)(22t+1+m)≥0,
因?yàn)?2t-1≥3,所以22t+1+m≥0恒成立,即m≥-(1+22t),
因?yàn)閠∈[1,2],所以-(1+22t)∈[-17,-5],則m≥-5.
故實(shí)數(shù)m的取值范圍為[-5,+∞).
點(diǎn)評(píng):本題考查函數(shù)恒成立問(wèn)題及不等式的求解、集合運(yùn)算,具有一定綜合性,恒成立問(wèn)題的常用解決方法是轉(zhuǎn)化為函數(shù)最值處理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過(guò)點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案