【題目】如圖1,把兩個全等的三角板ABCEFG疊放在一起,使三角板EFG的直角邊FG經(jīng)過三角板ABC的直角頂點C,垂直ABG,其中∠B=F=30°,斜邊ABEF均為4.現(xiàn)將三角板EFG由圖1所示的位置繞G點沿逆時針方向旋轉(zhuǎn)090°),如圖2EGAC于點K,GFBC于點H.在旋轉(zhuǎn)過程中,請你解決以下問題:

1)求證:△CGH∽△AGK;

2)連接HK,求證:KHEF;

3)設(shè)AK=x,CKH的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.

【答案】(1)證明見解析;(2)證明見解析;(3)y= , y最大值為.

【解析】試題分析:1GHGK的值沒發(fā)生變化,根據(jù)已知條件證明AGK∽△CGH,由相似三角形的性質(zhì)可得: =,又因為在RtACG中,tanA==,所以GHGK的比值是一個的值;

2)連接HK,由(1)可知在RtKHG中,tanGKH==,所以∠GKH=60°,再根據(jù)三角形的內(nèi)角和證明,∠E=EGF-F=90°-30°=60°,即可證得∠GKH=E=60°,利用同位角相等兩線平行即可證明KHEF

3)設(shè)AK=x,存在x=1,使CKH的面積最大,由(1)得AGK∽△CGH,所以CH=AK=x,根據(jù)三角形的面積公式表示出SCHK=CKCH=2-xx,再把二次函數(shù)的解析式化為頂點式即可求出x的值.

試題解析:

1)證明:在RtABC中,CGABB=30°,

∴∠GCH=GAK=60°.

又∠CGH=AGK=

∴△CGH∽△AGK.

2)證明:連接HK,

由(1)得CGH∽△AGK

.

RtACG中,tanA==,

.

RtKHG中,tanGKH=,

∴∠GKH=60°.

RtEFG中,∠F=30°,∴∠E=60°,

∴∠GKH=E,

KHEF.

3)解:由(1)得CGH∽△AGK

由(2)知,.

CH=AK= .

RtABC中,∠B=30°,

AC=AB=2

CK=AC-AK=2-x.

y=CK·CH= = .

y=.

∴當(dāng)x=1時,y有最大值為.

點睛: 本題考查的是相似三角形的判定與性質(zhì)及圖形旋轉(zhuǎn)的性質(zhì)、平行線的判定和性質(zhì)、三角形的面積公式、二次函數(shù)的最值問題,題目的綜合性很強,難度中等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:m3n﹣4mn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在Rt△ABC中,∠C=90°, ∠B=30°,AC=1,CDAB,垂足為D,現(xiàn)將△ACDD點順時針旋轉(zhuǎn)得到△ACD, 旋轉(zhuǎn)時間為t秒,△ACDD點旋轉(zhuǎn)的角速度/秒(每秒轉(zhuǎn)10度) .

(1)旋轉(zhuǎn)時間t= 秒時,ACAB;

(2)△ACD繞D點順時針旋轉(zhuǎn)一周(3600),斜邊AC掃過的面積為

(3)如圖②,連接AC、 CB

①若6<t<9,求證: 為定值;

②當(dāng)t>9時,上述結(jié)論還成立嗎?如成立直接寫出比值,不成立請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標(biāo)為4.

(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;
(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為24,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+2與x軸、y軸分別交于點A(-1,0)和點B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點C(1,n).

(1)求k的值;

(2)求反比例函數(shù)的解析式;

(3)過x軸上的點Da,0)作平行于y軸的直線a>1),分別與直線AB和雙曲線 交于點P、Q,且PQ=2QD,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個口袋中有3個大小相同的小球,球面上分別寫有數(shù)字1、23.從袋中隨機地摸出一個小球,記錄下數(shù)字后放回,再隨機地摸出一個小球.

1)請用樹形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;

2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ θ, ,我們將這種變換記為,n]

1)如圖①,對△ABC作變換[60°]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;

2)如圖②,ABC中,∠BAC=30°ACB=90°,對△ABC作變換,n]得到△AB′C′,使點B、C、在同一直線上,且四邊形ABB′C′為矩形,求θn的值;

3)如圖③,ABC中,AB=AC,BAC=36°BC=1,對△ABC作變換,n]得到△AB′C′,使點B、CB′在同一直線上,且四邊形ABB′C′為平行四邊形,求θn的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項式x5y2+2x4y3﹣3x2y2﹣4xy是( 。
A.按x的升冪排列
B.按x的降冪排列
C.按y的升冪排列
D.按y的降冪排列

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(-4,2),B(-2,6),C(0,4)是直角坐標(biāo)系中的三點.

(1)把△ABC向右平移4個單位再向下平移1個單位,得到△A1B1C1,畫出平移后的圖形,并寫出點A的對應(yīng)點A1的坐標(biāo);

(2)以原點O為位似中心,將△ABC縮小為原來的一半,得到△A2B2C2,請在所給的坐標(biāo)系中作出所有滿足條件的圖形.

查看答案和解析>>

同步練習(xí)冊答案