2009屆高考數(shù)學壓軸題預測
專題四 解析幾何
考點一 曲線(軌跡)方程的求法
1. 設(shè)上的兩點,
滿足,橢圓的離心率短軸長為2,0為坐標原點.
(1)求橢圓的方程;
(2)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;
(3)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
解析:本例(1)通過,,及之間的關(guān)系可得橢圓的方程;(2)從方程入手,通過直線方程與橢圓方程組成方程組并結(jié)合韋達定理;(3)要注意特殊與一般的關(guān)系,分直線的斜率存在與不存在討論。
答案:(1)
橢圓的方程為
(2)設(shè)AB的方程為
由
由已知
2
(3)當A為頂點時,B必為頂點.S△AOB=1
當A,B不為頂點時,設(shè)AB的方程為y=kx+b
所以三角形的面積為定值.
點評:本題考查了直線與橢圓的基本概念和性質(zhì),二次方程的根與系數(shù)的關(guān)系、解析幾何的基本思想方法以及運用綜合知識解決問題的能力。
2. 在直角坐標平面中,△ABC的兩個頂點為 A(0,-1),B(0, 1)平面內(nèi)兩點G、M同時滿足① , ②= = ③∥
(1)求頂點C的軌跡E的方程
(2)設(shè)P、Q、R、N都在曲線E上 ,定點F的坐標為(, 0) ,已知∥ , ∥且?= 0.求四邊形PRQN面積S的最大值和最小值.
解析:本例(1)要熟悉用向量的方式表達點特征;(2)要把握好直線與橢圓的位置關(guān)系,弦長公式,靈活的運算技巧是解決好本題的關(guān)鍵。
答案:(1)設(shè)C ( x , y ), ,由①知,G為
△ABC的重心 , G(,) 由②知M是△ABC的外心,M在x軸上
由③知M(,0),
由 得
化簡整理得:(x≠0)。
(2)F(,0 )恰為的右焦點
設(shè)PQ的斜率為k≠0且k≠±,則直線PQ的方程為y = k ( x -)
由
設(shè)P(x1 , y1) ,Q (x2 ,y2 ) 則x1 + x2 = , x1?x2 =
則| PQ | = ?
= ?
=
RN⊥PQ,把k換成得 | RN | =
S =| PQ | ? | RN |
= =)
≥2 , ≥16
≤ S < 2 , (當 k = ±1時取等號)
又當k不存在或k = 0時S = 2
綜上可得 ≤ S ≤ 2
Smax = 2 , Smin =
點評:本題考查了向量的有關(guān)知識,橢圓與直線的基本關(guān)系,二次方程的根與系數(shù)的關(guān)系及不等式,轉(zhuǎn)化的基本思想方法以及運用綜合知識解決問題的能力。
考點二 圓錐曲線的幾何性質(zhì)
3. 如圖,F(xiàn)為雙曲線C:的右焦點 P為雙曲線C右支上一點,且位于軸上方,M為左準線上一點,為坐標原點 已知四邊形為平行四邊形,
(Ⅰ)寫出雙曲線C的離心率與的關(guān)系式;
(Ⅱ)當時,經(jīng)過焦點F且平行于OP的直線交雙曲線于A、B點,若,求此時的雙曲線方程
分析: 圓錐曲線的幾何性質(zhì)結(jié)合其它圖形的考查是重點。注意靈活應用第二定義。
解:∵四邊形是,∴,作雙曲線的右準線交PM于H,則,又,
(Ⅱ)當時,,,,雙曲線為四邊形是菱形,所以直線OP的斜率為,則直線AB的方程為,代入到雙曲線方程得:,
又,由得:,解得,則,所以為所求
點評:本題靈活的運用到圓錐曲線的第二定義解題。
4. 設(shè)分別為橢圓的左、右頂點,橢圓長半軸的長等于焦距,且為它的右準線
(Ⅰ)、求橢圓的方程;
(Ⅱ)、設(shè)為右準線上不同于點(4,0)的任意一點, 若直線分別與橢圓相交于異于的點,證明:點在以為直徑的圓內(nèi)
分析:本小題主要考查直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識,考查綜合運用數(shù)學知識進行推理運算的能力和解決問題的能力
解:(Ⅰ)依題意得 a=
故橢圓的方程為
(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0)
設(shè)M(x0,y0)
∵M點在橢圓上,∴y0=(4-x02) 1
又點M異于頂點A、B,∴-2<x0<2,由P、A、M三點共線可以得
P(4,)
從而=(x0-2,y0),
=(2,)
∴?=2x0-4+=(x02-4+3y02) 2
將1代入2,化簡得?=(2-x0)
∵2-x0>0,∴?>0,則∠MBP為銳角,從而∠MBN為鈍角,
故點B在以MN為直徑的圓內(nèi)
解法2:由(Ⅰ)得A(-2,0),B(2,0) 設(shè)M(x1,y1),N(x2,y2),
則-2<x1<2,-2<x2<2,又MN的中點Q的坐標為(,),
依題意,計算點B到圓心Q的距離與半徑的差
-=(-2)2+()2-[(x1-x2)2+(y1-y2)2]
=(x1-2) (x2-2)+y1y1 3
又直線AP的方程為y=,直線BP的方程為y=,
而點兩直線AP與BP的交點P在準線x=4上,
∴,即y2= 4
又點M在橢圓上,則,即 5
于是將4、5代入3,化簡后可得-=
從而,點B在以MN為直徑的圓內(nèi)
點評:本題關(guān)鍵是聯(lián)系直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識,運用數(shù)學知識進行推理運算的能力和解決問題的能力
考點三 直線與圓錐曲線位置關(guān)系問題
5. 已知拋物線C:上任意一點到焦點F的距離比到y(tǒng)軸的距離大1。
(1)求拋物線C的方程;
(2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個數(shù)學問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為,求側(cè)棱長”;也可以是“若正四棱錐的體積為,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點的直線交拋物線C:于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過焦點F。
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題。
解析:
答案:解:(1)
(2)設(shè)(t>0),則,F(xiàn)(1,0)。
因為M、F、N共線,則有,
所以,解得,
所以,
因而,直線MN的方程是。
(3)“逆向問題”一:
①已知拋物線C:的焦點為F,過點F的直線交拋物線C于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點。
證明:設(shè)過F的直線為y=k(x),,,則
由得,所以, , =,
所以直線RQ必過焦點A。
②過點的直線交拋物線C于P、Q兩點,F(xiàn)P與拋物線交于另一點R,則RQ垂直于x軸。
③已知拋物線C:,過點B(m,0 )(m>0)的直線交拋物線C于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點A(-m,0)。
“逆向問題”二:已知橢圓C:的焦點為F1(-c,0),F(xiàn)2(c,0),過F2的直線交橢圓C于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點。
“逆向問題”三:已知雙曲線C:的焦點為F1(-c,0),F(xiàn)2(c,0),過F2的直線交雙曲線C于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點。
考點四 圓錐曲線的應用
(1).圓錐曲線的標準方程和幾何性質(zhì)與平面向量的巧妙結(jié)合。
6. (2004年全國高考天津理科22題)橢圓的中心是原點O,它的短軸長為,相應于焦點F(C,0)(C>0)的準線L與X軸相交于點A,,過點A的直線與橢圓相交于P、Q兩點。
(1)求橢圓的方程及離心率;
(2)若 OP?O Q = 0,求直線PQ的方程;
(3)設(shè) A P = AQ(>1),過點P且平行與準線L的直線與橢圓相交于另一點M,證明 FM = - FQ 。
分析:(1)要求橢圓的方程及離心率,很重要的一點就是要熟悉這種二次曲線的標準方程的中心、長軸長、短軸長、焦點坐標、標準方程、離心率、焦距等有關(guān)概念及幾何性質(zhì)。解:(1)根據(jù)已知條件“橢圓的中心是原點O,它的短軸長為,相應于焦點F(C,0)(C>0)的準線L與X軸相交于點A! 可設(shè)橢圓的方程為 (a>),從而有;又因可以有,聯(lián)系以上這兩個關(guān)于a、c的方程組并解得a=,c=2,所以橢圓的方程為,離心率e=。
(2)根據(jù)已知條件
“O P?O Q =
(3)要證F M =- F Q ,我們?nèi)菀紫氲酵ㄟ^式中兩個向量FM、FQ的坐標之間關(guān)系來謀求證題的方法。為此我們可根據(jù)題意“過點P且平行為準線L的直線與橢圓相交于另一點M”,求得點M坐標為。又因AP=AQ,易知FM、FQ的兩個縱坐標已經(jīng)滿足,所以現(xiàn)在要考慮的問題是如何證明FM、FQ的兩個橫坐標應該滿足,事實上,
注意到>1,解得 ⑤
因F(2,0),M,故FM==。
==
又FQ=,因此FM=-FQ。
點評:本題主要考查橢圓的標準方程、幾何性質(zhì)及相關(guān)概念,直線方程、平面向量的坐標表示和向量的數(shù)量積,多元二次方程組解法、曲線和方程的關(guān)系、直線與橢圓相交等解析幾何的基礎(chǔ)思想方法,以及分析問題和綜合解題能力。
把兩個向量之間的關(guān)系,轉(zhuǎn)化為兩個向量坐標之間的關(guān)系,再通過代數(shù)運算的方法來解決有關(guān)向量的問題是一種常用的解題手段。
7. (江蘇卷)已知,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)若直線l過點F2且與軌跡E交于P、Q兩點.
(i)無論直線l繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點,使恒成立,求實數(shù)m的值.
(ii)過P、Q作直線的垂線PA、OB,垂足分別為A、B,記,求λ的取值范圍.
解析:
答案:解:(1)由知,點P的軌跡E是以F1、F2為焦點的雙曲線右支,由,故軌跡E的方程為
(2)當直線l的斜率存在時,設(shè)直線方程為,與雙曲線方程聯(lián)立消y得,
解得k2 >3
(i)
|