1.  設(shè) pn(k) 是集合{1, 2, 3, ... , n} 上具有 k 個固定點的排列的個數(shù),求證 k從 0 到 n 對(k pn(k) )的求和是 n!。

[一個集合S的一個排列是從S到它自身的一一映射。元素 i 稱為是 f 固定點如果 f(i) = i。]

2. 銳交三角形ABC 的內(nèi)角A的角平分線交BC于 L,交ABC的外接圓于 N,從 L 點向 AB,AC做垂線,垂足分別是 K、M,求證四邊形 AKNM的面積與三角形ABC的面積相等。

3.  x1, x2, ... , xn 是實數(shù)并且滿足x12 + x22 + ... + xn2 = 1,求證對每個正整數(shù)k >= 2存在不全為0的整數(shù)a1, a2, ... , an,使得對每個 i有|ai| <= k - 1 及

|a1x1 + a2x2 + ... + anxn| <= (k - 1)√n/(kn-1)。

4. 求證不存在從非負整數(shù)到非負整數(shù)的函數(shù) f滿足對所有n有 f(f(n)) = n + 1987 成立。 

5. n是大于或等于3的整數(shù),求證存在一個由平面上n個點構(gòu)成的集合滿足任何兩點的距離都是無理數(shù)并且任何三點構(gòu)成一個面積為有理數(shù)的非退化的三角形。

6. n是大于或等于2的整數(shù),如果對所有0<=k<=√n/3都有k2 + k + n 是素數(shù),則

當0<=k<=n-2時,k2 + k + n 都是素數(shù)。

 


同步練習(xí)冊答案