2009年高考數(shù)學(xué)難點(diǎn)突破專題輔導(dǎo)十三

難點(diǎn)13  數(shù)列的通項與求和

數(shù)列是函數(shù)概念的繼續(xù)和延伸,數(shù)列的通項公式及前n項和公式都可以看作項數(shù)n的函數(shù),是函數(shù)思想在數(shù)列中的應(yīng)用.數(shù)列以通項為綱,數(shù)列的問題,最終歸結(jié)為對數(shù)列通項的研究,而數(shù)列的前n項和Sn可視為數(shù)列{Sn}的通項。通項及求和是數(shù)列中最基本也是最重要的問題之一,與數(shù)列極限及數(shù)學(xué)歸納法有著密切的聯(lián)系,是高考對數(shù)列問題考查中的熱點(diǎn),本點(diǎn)的動態(tài)函數(shù)觀點(diǎn)解決有關(guān)問題,為其提供行之有效的方法.

●難點(diǎn)磁場

(★★★★★)設(shè){an}是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對于所有的自然數(shù)n,an與2的等差中項等于Sn與2的等比中項.

(1)寫出數(shù)列{an}的前3項.

(2)求數(shù)列{an}的通項公式(寫出推證過程)

(3)令bn=6ec8aac122bd4f6e(nN*),求6ec8aac122bd4f6e (b1+b2+b3+…+bnn).

●案例探究

[例1]已知數(shù)列{an}是公差為d的等差數(shù)列,數(shù)列{bn}是公比為q的(qRq≠1)的等比數(shù)列,若函數(shù)f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

(1)求數(shù)列{an}和{bn}的通項公式;

(2)設(shè)數(shù)列{cn}的前n項和為Sn,對一切nN*,都有6ec8aac122bd4f6e=an+1成立,求6ec8aac122bd4f6e6ec8aac122bd4f6e.

命題意圖:本題主要考查等差、等比數(shù)列的通項公式及前n項和公式、數(shù)列的極限,以及運(yùn)算能力和綜合分析問題的能力.屬★★★★★級題目.

知識依托:本題利用函數(shù)思想把題設(shè)條件轉(zhuǎn)化為方程問題非常明顯,而(2)中條件等式的左邊可視為某數(shù)列前n項和,實(shí)質(zhì)上是該數(shù)列前n項和與數(shù)列{an}的關(guān)系,借助通項與前n項和的關(guān)系求解cn是該條件轉(zhuǎn)化的突破口.

錯解分析:本題兩問環(huán)環(huán)相扣,(1)問是基礎(chǔ),但解方程求基本量a1、b1、d、q,計算不準(zhǔn)易出錯;(2)問中對條件的正確認(rèn)識和轉(zhuǎn)化是關(guān)鍵.

技巧與方法:本題(1)問運(yùn)用函數(shù)思想轉(zhuǎn)化為方程問題,思路較為自然,(2)問“借雞生蛋”構(gòu)造新數(shù)列{dn},運(yùn)用和與通項的關(guān)系求出dn,絲絲入扣.

解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,

a3a1=d2-(d-2)2=2d,

d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,

6ec8aac122bd4f6e=q2,由qR,且q≠1,得q=-2,

bn=b?qn1=4?(-2)n1

(2)令6ec8aac122bd4f6e=dn,則d1+d2+…+dn=an+1,(nN*),

dn=an+1an=2,

6ec8aac122bd4f6e=2,即cn=2?bn=8?(-2)n1;∴Sn=6ec8aac122bd4f6e[1-(-2)n].

6ec8aac122bd4f6e

[例2]設(shè)An為數(shù)列{an}的前n項和,An=6ec8aac122bd4f6e (an-1),數(shù)列{bn}的通項公式為bn=4n+3;

(1)求數(shù)列{an}的通項公式;

(2)把數(shù)列{an}與{bn}的公共項按從小到大的順序排成一個新的數(shù)列,證明:數(shù)列{dn}的通項公式為dn=32n+1;

(3)設(shè)數(shù)列{dn}的第n項是數(shù)列{bn}中的第r項,Br為數(shù)列{bn}的前r項的和;Dn為數(shù)列{dn}的前n項和,Tn=BrDn,求6ec8aac122bd4f6e6ec8aac122bd4f6e.

命題意圖:本題考查數(shù)列的通項公式及前n項和公式及其相互關(guān)系;集合的相關(guān)概念,數(shù)列極限,以及邏輯推理能力.

知識依托:利用項與和的關(guān)系求an是本題的先決;(2)問中探尋{an}與{bn}的相通之處,須借助于二項式定理;而(3)問中利用求和公式求和則是最基本的知識點(diǎn).

錯解分析:待證通項dn=32n+1an的共同點(diǎn)易被忽視而寸步難行;注意不到rn的關(guān)系,使Tn中既含有n,又含有r,會使所求的極限模糊不清.

技巧與方法:(1)問中項與和的關(guān)系為常規(guī)方法,(2)問中把3拆解為4-1,再利用二項式定理,尋找數(shù)列通項在形式上相通之處堪稱妙筆;(3)問中挖掘出nr的關(guān)系,正確表示Br,問題便可迎刃而解.

解:(1)由An=6ec8aac122bd4f6e(an-1),可知An+1=6ec8aac122bd4f6e(an+1-1),

an+1an=6ec8aac122bd4f6e (an+1an),即6ec8aac122bd4f6e=3,而a1=A1=6ec8aac122bd4f6e (a1-1),得a1=3,所以數(shù)列是以3為首項,公比為3的等比數(shù)列,數(shù)列{an}的通項公式an=3n.

(2)∵32n+1=3?32n=3?(4-1)2n=3?[42n+C6ec8aac122bd4f6e?42n1(-1)+…+C6ec8aac122bd4f6e?4?(-1)+(-1)2n]=4n+3,

∴32n+1∈{bn}.而數(shù)32n=(4-1)2n=42n+C6ec8aac122bd4f6e?42n1?(-1)+…+C6ec8aac122bd4f6e?4?(-1)+(-1)2n=(4k+1),

∴32n6ec8aac122bd4f6e{bn},而數(shù)列{an}={a2n+1}∪{a2n},∴dn=32n+1.

(3)由32n+1=4?r+3,可知r=6ec8aac122bd4f6e,

Br=6ec8aac122bd4f6e,

6ec8aac122bd4f6e

●錦囊妙計

1.數(shù)列中數(shù)的有序性是數(shù)列定義的靈魂,要注意辨析數(shù)列中的項與數(shù)集中元素的異同.因此在研究數(shù)列問題時既要注意函數(shù)方法的普遍性,又要注意數(shù)列方法的特殊性.

2.數(shù)列{an}前n 項和Sn與通項an的關(guān)系式:an=6ec8aac122bd4f6e

3.求通項常用方法

①作新數(shù)列法.作等差數(shù)列與等比數(shù)列.

②累差疊加法.最基本形式是:an=(anan1+(an1+an2)+…+(a2a1)+a1.

③歸納、猜想法.

4.數(shù)列前n項和常用求法

①重要公式

1+2+…+n=6ec8aac122bd4f6en(n+1)

12+22+…+n2=6ec8aac122bd4f6en(n+1)(2n+1)

13+23+…+n3=(1+2+…+n)2=6ec8aac122bd4f6en2(n+1)2

②等差數(shù)列中Sm+n=Sm+Sn+mnd,等比數(shù)列中Sm+n=Sn+qnSm=Sm+qmSn.

③裂項求和:將數(shù)列的通項分成兩個式子的代數(shù)和,即an=f(n+1)-f(n),然后累加時抵消中間的許多項.應(yīng)掌握以下常見的裂項:

6ec8aac122bd4f6e

④錯項相消法

⑤并項求和法

數(shù)列通項與和的方法多種多樣,要視具體情形選用合適方法.

●殲滅難點(diǎn)訓(xùn)練

一、填空題

1.(★★★★★)設(shè)zn=(6ec8aac122bd4f6e)n,(nN*),記Sn=|z2z1|+|z3z2|+…+|zn+1zn|,則6ec8aac122bd4f6eSn=_________.

試題詳情

2.(★★★★★)作邊長為a的正三角形的內(nèi)切圓,在這個圓內(nèi)作新的內(nèi)接正三角形,在新的正三角形內(nèi)再作內(nèi)切圓,如此繼續(xù)下去,所有這些圓的周長之和及面積之和分別為_________.

試題詳情

二、解答題

3.(★★★★)數(shù)列{an}滿足a1=2,對于任意的nN*都有an>0,且(n+1)an2+an?an+1

試題詳情

nan+12=0,又知數(shù)列{bn}的通項為bn=2n1+1.

(1)求數(shù)列{an}的通項an及它的前n項和Sn;

(2)求數(shù)列{bn}的前n項和Tn

(3)猜想SnTn的大小關(guān)系,并說明理由.

試題詳情

4.(★★★★)數(shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1an,(nN*).

(1)求數(shù)列{an}的通項公式;

(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn;

試題詳情

(3)設(shè)bn=6ec8aac122bd4f6e(nN*),Tn=b1+b2+……+bn(nN*),是否存在最大的整數(shù)m,使得對任意nN*均有Tn6ec8aac122bd4f6e成立?若存在,求出m的值;若不存在,說明理由.

試題詳情

5.(★★★★★)設(shè)數(shù)列{an}的前n項和為Sn,且Sn=(m+1)-man.對任意正整數(shù)n都成立,其中m為常數(shù),且m<-1.

(1)求證:{an}是等比數(shù)列;

試題詳情

(2)設(shè)數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足:b1=6ec8aac122bd4f6ea1,bn=f(bn1)(n≥2,nN*).試問當(dāng)m為何值時,6ec8aac122bd4f6e成立?

試題詳情

6.(★★★★★)已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.

(1)求數(shù)列{bn}的通項bn

試題詳情

(2)設(shè)數(shù)列{an}的通項an=loga(1+6ec8aac122bd4f6e)(其中a>0且a≠1),記Sn是數(shù)列{an}的前n項和,試比較Sn6ec8aac122bd4f6elogabn+1的大小,并證明你的結(jié)論.

試題詳情

7.(★★★★★)設(shè)數(shù)列{an}的首項a1=1,前n項和Sn滿足關(guān)系式:3tSn-(2t+3)Sn1=3t(t>0,n=2,3,4…).

(1)求證:數(shù)列{an}是等比數(shù)列;

試題詳情

(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f(6ec8aac122bd4f6e)(n=2,3,4…),求數(shù)列{bn}的通項bn;

(3)求和:b1b2b2b3+b3b4-…+b2n1b2nb2nb2n+1.

試題詳情

難點(diǎn)磁場

解析:(1)由題意,當(dāng)n=1時,有6ec8aac122bd4f6e,S1=a1

6ec8aac122bd4f6e,解得a1=2.當(dāng)n=2時,有6ec8aac122bd4f6eS2=a1+a2,將a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6.當(dāng)n=3時,有6ec8aac122bd4f6e,S3=a1+a2+a3,將a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.故該數(shù)列的前3項為2,6,10.

(2)解法一:由(1)猜想數(shù)列{an}.有通項公式an=4n-2.下面用數(shù)學(xué)歸納法證明{an}的通項公式是an=4n-2,(nN*).

①當(dāng)n=1時,因?yàn)?×1-2=2,,又在(1)中已求出a1=2,所以上述結(jié)論成立.

②假設(shè)當(dāng)n=k時,結(jié)論成立,即有ak=4k-2,由題意,有6ec8aac122bd4f6e,將ak=4k-2.代入上式,解得2k=6ec8aac122bd4f6e,得Sk=2k2,由題意,有6ec8aac122bd4f6e,Sk+1=Sk+ak+1,將Sk=2k2代入得(6ec8aac122bd4f6e)2=2(ak+1+2k2),整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k,所以ak+1=2+4k=4(k+1)-2,即當(dāng)n=k+1時,上述結(jié)論成立.根據(jù)①②,上述結(jié)論對所有的自然數(shù)nN*成立.

解法二:由題意知6ec8aac122bd4f6e,(nN*).整理得,Sn=6ec8aac122bd4f6e(an+2)2,由此得Sn+1=6ec8aac122bd4f6e(an+1+2)2,∴an+1=Sn+1Sn=6ec8aac122bd4f6e[(an+1+2)2-(an+2)2].整理得(an+1+an)(an+1an-4)=0,由題意知an+1+an≠0,∴an+1an=4,即數(shù)列{an}為等差數(shù)列,其中a1=2,公差d=4.∴an=a1+(n-1)d=2+4(n-1),即通項公式為an=4n-2.

解法三:由已知得6ec8aac122bd4f6e,(nN*)①,所以有6ec8aac122bd4f6e②,由②式得6ec8aac122bd4f6e,整理得Sn+1-26ec8aac122bd4f6e?6ec8aac122bd4f6e+2-Sn=0,解得6ec8aac122bd4f6e,由于數(shù)列{an}為正項數(shù)列,而6ec8aac122bd4f6e,因而6ec8aac122bd4f6e,即{Sn}是以6ec8aac122bd4f6e為首項,以6ec8aac122bd4f6e為公差的等差數(shù)列.所以6ec8aac122bd4f6e= 6ec8aac122bd4f6e+(n-1) 6ec8aac122bd4f6e=6ec8aac122bd4f6en,Sn=2n2,

an=6ec8aac122bd4f6ean=4n-2(nN*).

(3)令cn=bn-1,則cn=6ec8aac122bd4f6e

6ec8aac122bd4f6e

殲滅難點(diǎn)訓(xùn)練

一、6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:1+6ec8aac122bd4f6e

2.解析:由題意所有正三角形的邊長構(gòu)成等比數(shù)列{an},可得an=6ec8aac122bd4f6e,正三角形的內(nèi)切圓構(gòu)成等比數(shù)列{rn},可得rn=6ec8aac122bd4f6ea,?

∴這些圓的周長之和c=6ec8aac122bd4f6e2π(r1+r2+…+rn)=6ec8aac122bd4f6e a2

面積之和S=6ec8aac122bd4f6eπ(n2+r22+…+rn2)=6ec8aac122bd4f6ea2

答案:周長之和6ec8aac122bd4f6eπa,面積之和6ec8aac122bd4f6ea2

二、3.解:(1)可解得6ec8aac122bd4f6e,從而an=2n,有Sn=n2+n

(2)Tn=2n+n-1.

(3)TnSn=2nn2-1,驗(yàn)證可知,n=1時,T1=S1,n=2時T2S2n=3時,T3S3;n=4時,T4S4;n=5時,T5S5;n=6時T6S6.猜想當(dāng)n≥5時,TnSn,即2nn2+1

可用數(shù)學(xué)歸納法證明(略).

4.解:(1)由an+2=2an+1an6ec8aac122bd4f6ean+2an+1=an+1an可知{an}成等差數(shù)列,?

d=6ec8aac122bd4f6e=-2,∴an=10-2n.

(2)由an=10-2n≥0可得n≤5,當(dāng)n≤5時,Sn=-n2+9n,當(dāng)n>5時,Sn=n2-9n+40,故Sn=6ec8aac122bd4f6e

(3)bn=6ec8aac122bd4f6e

6ec8aac122bd4f6e;要使Tn6ec8aac122bd4f6e總成立,需6ec8aac122bd4f6eT1=6ec8aac122bd4f6e成立,即m<8且mZ,故適合條件的m的最大值為7.

5.解:(1)由已知Sn+1=(m+1)-man+1?①,Sn=(m+1)-man②,由①-②,得an+1=manman+1,即(m+1)an+1=man對任意正整數(shù)n都成立.

m為常數(shù),且m<-1

6ec8aac122bd4f6e,即{6ec8aac122bd4f6e}為等比數(shù)列.

(2)當(dāng)n=1時,a1=m+1-ma1,∴a1=1,從而b1=6ec8aac122bd4f6e.

由(1)知q=f(m)=6ec8aac122bd4f6e,∴bn=f(bn1)=6ec8aac122bd4f6e (nN*,且n≥2)

6ec8aac122bd4f6e,即6ec8aac122bd4f6e,∴{6ec8aac122bd4f6e}為等差數(shù)列.∴6ec8aac122bd4f6e=3+(n-1)=n+2,

6ec8aac122bd4f6e(nN*).

6ec8aac122bd4f6e

6.解:(1)設(shè)數(shù)列{bn}的公差為d,由題意得:6ec8aac122bd4f6e解得b1=1,d=3,

bn=3n-2.

(2)由bn=3n-2,知Sn=loga(1+1)+loga(1+6ec8aac122bd4f6e)+…+loga(1+6ec8aac122bd4f6e)

=loga[(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)],6ec8aac122bd4f6elogabn+1=loga6ec8aac122bd4f6e.

因此要比較Sn6ec8aac122bd4f6elogabn+1的大小,可先比較(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)與6ec8aac122bd4f6e的大小,

n=1時,有(1+1)>6ec8aac122bd4f6e

n=2時,有(1+1)(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e

 由此推測(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e                                ①

若①式成立,則由對數(shù)函數(shù)性質(zhì)可判定:

當(dāng)a>1時,Sn6ec8aac122bd4f6elogabn+1,                                                                           ②

當(dāng)0<a<1時,Sn6ec8aac122bd4f6elogabn+1,                                                                     ③

下面用數(shù)學(xué)歸納法證明①式.

(?)當(dāng)n=1時,已驗(yàn)證①式成立.

(?)假設(shè)當(dāng)n=k時(k≥1),①式成立,即:

6ec8aac122bd4f6e.那么當(dāng)n=k+1時,

6ec8aac122bd4f6e

這就是說①式當(dāng)n=k+1時也成立.

由(?)(?)可知①式對任何正整數(shù)n都成立.

由此證得:

當(dāng)a>1時,Sn6ec8aac122bd4f6elogabn+1;當(dāng)0<a<1時,Sn6ec8aac122bd4f6elogabn+1?.

7.解:(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.

a2=6ec8aac122bd4f6e.

又3tSn-(2t+3)Sn1=3t,                                                                                  ①

3tSn1-(2t+3)Sn2=3t                                                                                      

①-②得3tan-(2t+3)an1=0.

6ec8aac122bd4f6e,n=2,3,4…,所以{an}是一個首項為1公比為6ec8aac122bd4f6e的等比數(shù)列;

(2)由f(t)= 6ec8aac122bd4f6e=6ec8aac122bd4f6e,得bn=f(6ec8aac122bd4f6e)=6ec8aac122bd4f6e+bn1?.

可見{bn}是一個首項為1,公差為6ec8aac122bd4f6e的等差數(shù)列.

于是bn=1+6ec8aac122bd4f6e(n-1)=6ec8aac122bd4f6e;

(3)由bn=6ec8aac122bd4f6e,可知{b2n1}和{b2n}是首項分別為1和6ec8aac122bd4f6e,公差均為6ec8aac122bd4f6e的等差數(shù)列,于是b2n=6ec8aac122bd4f6e,

b1b2b2b3+b3b4b4b5+…+b2n1b2nb2nb2n+1?

=b2(b1b3)+b4(b3b5)+…+b2n(b2n1b2n+1)

=-6ec8aac122bd4f6e (b2+b4+…+b2n)=-6ec8aac122bd4f6e?6ec8aac122bd4f6en(6ec8aac122bd4f6e+6ec8aac122bd4f6e)=-6ec8aac122bd4f6e (2n2+3n)


同步練習(xí)冊答案