2009年高考數(shù)學難點突破專題輔導三十二

難點32  極限及其運算

極限的概念及其滲透的思想,在數(shù)學中占有重要的地位,它是人們研究許多問題的工具.舊教材中原有的數(shù)列極限一直是歷年高考中重點考查的內容之一.本節(jié)內容主要是指導考生深入地理解極限的概念,并在此基礎上能正確熟練地進行有關極限的運算問題.

●難點磁場

(★★★★)求6ec8aac122bd4f6e.

●案例探究

[例1]已知6ec8aac122bd4f6e(6ec8aac122bd4f6eaxb)=0,確定ab的值.

命題意圖:在數(shù)列與函數(shù)極限的運算法則中,都有應遵循的規(guī)則,也有可利用的規(guī)律,既有章可循,有法可依.因而本題重點考查考生的這種能力.也就是本知識的系統(tǒng)掌握能力.屬★★★★★級題目.

知識依托:解決本題的閃光點是對式子進行有理化處理,這是求極限中帶無理號的式子常用的一種方法.

錯解分析:本題難點是式子的整理過程繁瑣,稍不注意就有可能出錯.

技巧與方法:有理化處理.

解:6ec8aac122bd4f6e

6ec8aac122bd4f6e 

要使上式極限存在,則1-a2=0,

當1-a2=0時,

6ec8aac122bd4f6e

6ec8aac122bd4f6e  解得6ec8aac122bd4f6e

[例2]設數(shù)列a1,a2,…,an,…的前n項的和Snan的關系是Sn=1-ban6ec8aac122bd4f6e,其中b是與n無關的常數(shù),且b≠-1.

(1)求anan1的關系式;

(2)寫出用nb表示an的表達式;

(3)當0<b<1時,求極限6ec8aac122bd4f6eSn.

命題意圖:歷年高考中多出現(xiàn)的題目是與數(shù)列的通項公式,前n項和Sn等有緊密的聯(lián)系.有時題目是先依條件確定數(shù)列的通項公式再求極限,或先求出前n項和Sn再求極限,本題考查學生的綜合能力.屬★★★★★級題目.

知識依托:解答本題的閃光點是分析透題目中的條件間的相互關系.

錯解分析:本題難點是第(2)中由(1)中的關系式猜想通項及n=1與n=2時的式子不統(tǒng)一性.

技巧與方法:抓住第一步的遞推關系式,去尋找規(guī)律.

解:(1)an=SnSn1=-b(anan1)-6ec8aac122bd4f6e=-b(anan1)+6ec8aac122bd4f6e (n≥2)

解得an=6ec8aac122bd4f6e (n≥2)

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

●錦囊妙計

1.學好數(shù)列的極限的關鍵是真正從數(shù)列的項的變化趨勢理解數(shù)列極限.

學好函數(shù)的極限的關鍵是真正從函數(shù)值或圖象上點的變化趨勢理解函數(shù)極限.

2.運算法則中各個極限都應存在.都可推廣到任意有限個極限的情況,不能推廣到無限個.在商的運算法則中,要注意對式子的恒等變形,有些題目分母不能直接求極限.

3.注意在平時學習中積累一些方法和技巧,如:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

●殲滅難點訓練

一、選擇題

1.(★★★★)an是(1+x)n展開式中含x2的項的系數(shù),則6ec8aac122bd4f6e等于(    )

A.2                              B.0                              C.1                              D.-1

試題詳情

2.(★★★★)若三數(shù)a,1,c成等差數(shù)列且a2,1,c2又成等比數(shù)列,則6ec8aac122bd4f6e的值是(    )

A.0                              B.1                              C.0或1                       D.不存在

試題詳情

二、填空題

3.(★★★★) 6ec8aac122bd4f6e =_________.

試題詳情

4.(★★★★)若6ec8aac122bd4f6e=1,則ab的值是_________.

試題詳情

三、解答題

5.(★★★★★)在數(shù)列{an}中,已知a1=6ec8aac122bd4f6e,a2=6ec8aac122bd4f6e,且數(shù)列{an+16ec8aac122bd4f6ean}是公比為6ec8aac122bd4f6e的等比數(shù)列,數(shù)列{lg(an+16ec8aac122bd4f6ean}是公差為-1的等差數(shù)列.

(1)求數(shù)列{an}的通項公式;

試題詳情

(2)Sn=a1+a2+…+an(n≥1),求6ec8aac122bd4f6eSn.

試題詳情

6.(★★★★)設f(x)是x的三次多項式,已知6ec8aac122bd4f6e=1,試求6ec8aac122bd4f6e的值.(a為非零常數(shù)).

試題詳情

7.(★★★★)已知數(shù)列{an},{bn}都是由正數(shù)組成的等比數(shù)列,公式分別為pq,其中pq,且p≠1,q≠1,設cn=an+bn,Sn為數(shù)列{cn}的前n項和,求6ec8aac122bd4f6e的值.

試題詳情

8.(★★★★★)已知數(shù)列{an}是公差為d的等差數(shù)列,d≠0且a1=0,bn=26ec8aac122bd4f6e (nN*),Sn是{bn}的前n項和,Tn=6ec8aac122bd4f6e (nN*).

(1)求{Tn}的通項公式;

試題詳情

(2)當d>0時,求6ec8aac122bd4f6eTn.

 

試題詳情

難點磁場

6ec8aac122bd4f6e

殲滅難點訓練

一、1.解析:6ec8aac122bd4f6e,

6ec8aac122bd4f6e

答案:A

2.解析:6ec8aac122bd4f6e

答案:C

二、3.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

4.解析:原式=6ec8aac122bd4f6e

6ec8aac122bd4f6e

a?b=86ec8aac122bd4f6e

答案:86ec8aac122bd4f6e

三、5.解:(1)由{an+16ec8aac122bd4f6ean}是公比為6ec8aac122bd4f6e的等比數(shù)列,且a1=6ec8aac122bd4f6e,a2=6ec8aac122bd4f6e,

an+16ec8aac122bd4f6ean=(a26ec8aac122bd4f6ea1)(6ec8aac122bd4f6e)n-1=(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)(6ec8aac122bd4f6e)n-1=6ec8aac122bd4f6e,

an+1=6ec8aac122bd4f6ean+6ec8aac122bd4f6e                                               ①

又由數(shù)列{lg(an+16ec8aac122bd4f6ean)}是公差為-1的等差數(shù)列,且首項lg(a26ec8aac122bd4f6ea1)

=lg(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)=-2,

∴其通項lg(an+16ec8aac122bd4f6ean)=-2+(n-1)(-1)=-(n+1),

an+16ec8aac122bd4f6ean=10(n+1),即an+1=6ec8aac122bd4f6ean+10(n+1)                                                                                                

①②聯(lián)立解得an=6ec8aac122bd4f6e[(6ec8aac122bd4f6e)n+1-(6ec8aac122bd4f6e)n+1

(2)Sn=6ec8aac122bd4f6e

6ec8aac122bd4f6e

6.解:由于6ec8aac122bd4f6e=1,可知,f(2a)=0                                                                      ①

同理f(4a)=0                                                                                                            ②

由①②可知f(x)必含有(x-2a)與(x-4a)的因式,由于f(x)是x的三次多項式,故可設f(x)=A(x-2a)(x-4a)(xC),這里AC均為待定的常數(shù),

6ec8aac122bd4f6e

6ec8aac122bd4f6e,即4a2A-2aCA=-1                                                         ③

同理,由于6ec8aac122bd4f6e=1,得A(4a-2a)(4aC)=1,即8a2A-2aCA=1                        ④

由③④得C=3a,A=6ec8aac122bd4f6e,因而f(x)= 6ec8aac122bd4f6e (x-2a)(x-4a)(x-3a),

6ec8aac122bd4f6e

6ec8aac122bd4f6e

由數(shù)列{an}、{bn}都是由正數(shù)組成的等比數(shù)列,知p>0,q>0

6ec8aac122bd4f6e

p<1時,q<1, 6ec8aac122bd4f6e

6ec8aac122bd4f6e

8.解:(1)an=(n-1)d,bn=26ec8aac122bd4f6e=2(n1)d?

Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n1)d?

d≠0,2d≠1,∴Sn=6ec8aac122bd4f6e

Tn=6ec8aac122bd4f6e

(2)當d>0時,2d>1

6ec8aac122bd4f6e

 

 

 


同步練習冊答案