江蘇省南師大附校09高考二輪復(fù)習(xí)限時訓(xùn)練(13)

數(shù)學(xué)

(時間:60分鐘)

班級        姓名      得分         

一.填空題(每小題5分共60分,請將答案直填入答題紙中的相應(yīng)空檔內(nèi))

1.已知全集,,,則         學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

試題詳情

學(xué)科網(wǎng)(Zxxk.Com)2.函數(shù)的最小正周期是               學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)3.               學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

      • 第4題圖

        試題詳情

        5.已知下列三組條件:(1),;(2)為實常數(shù));(3)定義域為上的函數(shù)滿足,定義域為的函數(shù)是單調(diào)減函數(shù).其中A是B的充分不必要條件的是              .(填寫所有滿足要求的條件組的序號)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        6.在等差數(shù)列中,若,則                   學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        7.甲、乙兩種水稻試驗品種連續(xù)4年的單位面積平均產(chǎn)量如下:學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        品種

        第1年

        第2年

        第3年

        第4年

        試題詳情

        9.8

        試題詳情

        9.9

        試題詳情

        10.2

        試題詳情

        10.1

        試題詳情

        9.7

        10

        10

        試題詳情

        10.3

        試題詳情

        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        其中產(chǎn)量比較穩(wěn)定的水稻品種是                學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        8.在橢圓中,我們有如下結(jié)論:橢圓上斜率為1的弦的中點在直線上,類比上述結(jié)論,得到正確的結(jié)論為:雙曲線上斜率為1的弦的中點在直線      上.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        9.某算法的偽代碼如圖,則輸出的結(jié)果是                  學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        10.一個幾何體的三視圖如圖所示,該幾何體的內(nèi)接圓柱側(cè)面積的最大值為         學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        11.若)在上有零點,則的最小值為        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        12.已知拋物線焦點恰好是雙曲線的右焦點,且雙曲線過點(),則該雙曲線的漸近線方程為                    學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        二.解答題(每題15分,共30分)

        試題詳情

        學(xué)科網(wǎng)(Zxxk.Com)13. 如圖,、分別為直角三角形的直角邊和斜邊的中點,沿折起到的位置,連結(jié)、,的中點.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        (1)求證:平面;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        (2)求證:平面平面;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        (3)求證:平面學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        *             學(xué)科網(wǎng)

         

         

         

         

         

         

         

         

         

        試題詳情

        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        14 學(xué)科網(wǎng)(Zxxk.Com)。如圖,有一塊四邊形綠化區(qū)域,其中,,,現(xiàn)準(zhǔn)備經(jīng)過上一點上一點鋪設(shè)水管,且將四邊形分成面積相等的兩部分,設(shè),學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        (1)求的關(guān)系式;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        (2)求水管的長的最小值.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        試題詳情

        *             學(xué)科網(wǎng)

         

         

         

         

         

        南師大附校09高考二輪復(fù)習(xí)限時訓(xùn)練(十三)(答案)

        試題詳情

        試題詳情

        13.(本小題滿分15分)

        試題詳情

        (1)證明:E、P分別為AC、A′C的中點,

        試題詳情

                EP∥A′A,又A′A平面AA′B,EP平面AA′B

               ∴即EP∥平面A′FB                  …………………………………………5分

        (2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

           ∴BC⊥A′E,∴BC⊥平面A′EC

        試題詳情

             BC平面A′BC

           ∴平面A′BC⊥平面A′EC             …………………………………………9分

        (3)證明:在△A′EC中,P為A′C的中點,∴EP⊥A′C,

          在△A′AC中,EP∥A′A,∴A′A⊥A′C

        試題詳情

              由(2)知:BC⊥平面A′EC   又A′A平面A′EC

              ∴BC⊥AA′

              ∴A′A⊥平面A′BC                   …………………………………………14分

        試題詳情

        14.(本小題滿分15分)

        試題詳情

        (1)延長BD、CE交于A,則AD=,AE=2

        試題詳情

             則S△ADE= S△BDE= S△BCE=

        試題詳情

              ∵S△APQ=,∴

        試題詳情

              ∴             …………………………………………7分

        試題詳情

        (2)

        試題詳情

                  =?

        …………………………………………12分

        試題詳情

            當(dāng)

        試題詳情

        ,            

        …………………………………………15分

         

        試題詳情


        同步練習(xí)冊答案