2009年高考實(shí)戰(zhàn)模擬數(shù)學(xué)(文)試題
一、選擇題(本大題12小題,每小題5分,共60分.)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
B
A
C
A
C
D
B
D
B
C
二、填空題(本大題共4個(gè)小題,每小題5分,共20分.)
13. ; 14. 3; 15. ; 16.
三、解答題(共6個(gè)小題,共74分.解答應(yīng)寫出文字說明,證明過程或演算步驟)
17. 解:(Ⅰ)解法一:∵、、
∴,.
由得:,
即. ∵ ∴. …………………5分
解法二:∵ ∴點(diǎn)在線段的中垂線上,即在直線上,故
∵ ∴. …………………5分
(Ⅱ)由得:.
即 …………………6分
∵, ∴ …………8分
∴ 即
∴ ………………10分
18. 解:設(shè)“所選用的兩種不同的添加劑的芳香度之和等于
(Ⅰ)6種添加劑中任取兩種芳香度之和等于4的取法有2種:、,
故。 ………………………6分
(Ⅱ)芳香度之和等于1的取法有1種:;芳香度之和等于2的取法有1種:,故。 ………………………12分
19. 解法一:
(Ⅰ)依題意,在平面內(nèi) ………………………2分
在正方體中,
∴ 同理
∴平面
∴ ………………………………………6分
(Ⅱ)連接,過做平面,垂足為,∵∥ ∴在上;過作于,連接PF,則為二面角的一個(gè)平面角。 ………………8分
在中,,因?yàn)?sub>,
所以。
∴為的中點(diǎn) ∴為的中點(diǎn)。
即為的中點(diǎn)時(shí),二面角的正切值為。 ……………………12分
解法二:以為原點(diǎn),建立空間直角坐標(biāo)系,如圖所示。所以
()
(Ⅰ)
∴ …………………………………6分
(Ⅱ)由題意可得,為平面
的一個(gè)法向量,設(shè)為平面的一個(gè)法向量,
則 …………………7分
即,令z=1,解得: …………………8分
所以 ……10分
∴
解得 或(舍去)
∴為的中點(diǎn)時(shí),二面角的正切值為。 …………………12分
20. 解:(Ⅰ)根據(jù)題設(shè)條件,.設(shè)點(diǎn)則、滿足
∴可解得, …………………3分
∴
由得于是 .
∴所求雙曲線方程為. …………………6分
(Ⅱ)設(shè)是雙曲線上任意一點(diǎn),該雙曲的兩條漸近線方程分別是和. 則點(diǎn)到兩條漸近線的距離分別為:
, …………………8分
∴.
故點(diǎn)到雙曲線的兩條漸線的距離的乘積是一個(gè)常數(shù). …………………12分
21. 解(Ⅰ)由題意知
當(dāng)=1時(shí),
當(dāng)
兩式相減得()
整理得:() ……………………………………………4分
∴數(shù)列是為首項(xiàng),2為公比的等比數(shù)列.
……………………………………5分
(Ⅱ)
∴ ……………………………………6分
∴
①
②
①-②得 ………………9分
…………………………11分
∴ …………………………12分
22. 解:(Ⅰ)
, 而
∴
∵有三個(gè)根 ∴
∴
由得,即
∴ ……………………………4分
(Ⅱ)
∴
∴ …………………………8分
(Ⅲ)
∴
∴
又∵ ∴
當(dāng)且僅當(dāng)時(shí),取最小值,此時(shí)
…………………………………………12分
注:以上解答僅供參考,另有解法,酌情給分。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com