2009年安慶九中高三理科數(shù)學(xué)(五)

一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.復(fù)數(shù),則的值是(    )

試題詳情

A.                B.                C.                D.2

試題詳情

2.已知命題P:;命題Q:,則下列判斷正確的是(     )

  A.P是真命題           B.Q是假命題

試題詳情

C.P是真命題         D.Q是假命題

試題詳情

3.若關(guān)于x的方程有解,則m的取值范圍是(      )

試題詳情

A.          B.         C.        D.

試題詳情

4.在面積為S的三角形ABC的邊AB上任取一點(diǎn)P,則三角形的面積大于的概率是(      )

試題詳情

A.               B.                C.            D.

試題詳情

5.函數(shù)的零點(diǎn)所在的區(qū)間為(      )                    

試題詳情

A.(0,1)           B.         C.(2,3)         D.(2,4)

試題詳情

6.如圖(1)是某循環(huán)的一部分,若改為圖(2),則運(yùn)行過(guò)程中出現(xiàn)(    )

試題詳情

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               (1)                                 (2)

A.不循環(huán)            B.循環(huán)次數(shù)增加

C.循環(huán)次數(shù)減少,且只循環(huán)有限次                   D.無(wú)限循環(huán)

試題詳情

7.某班有40名同學(xué),一次數(shù)學(xué)考試的平均成績(jī)?yōu)镸,如果把M當(dāng)作一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的40個(gè)分?jǐn)?shù)一起,算出這41個(gè)分?jǐn)?shù)的平均值為N,那么M:N為(     )

試題詳情

A.             B.1           C           D.2

試題詳情

8.已知在平面直角坐標(biāo)系中O(0,0),,N(0,1),Q(2,3),動(dòng)點(diǎn)P(x,y)滿足:,則的最大值為(    )

試題詳情

A.2                B.                    C.4                D.8

試題詳情

9.過(guò)橢圓左焦點(diǎn)作直線交橢圓于兩點(diǎn), 若,且直線與長(zhǎng)軸的夾角為,則橢圓的離心率為 (     )                                                 (     )

試題詳情

A、            B、                   C、                    D、

試題詳情

10.曲線上存在不同的三點(diǎn)到點(diǎn)(2,0)的距離構(gòu)成等比數(shù)列,則下面數(shù)中不可能成為公比的數(shù)是(      )

試題詳情

    A.             B.              C.            D. 

試題詳情

11.設(shè)是非空實(shí)數(shù)集,若,使得對(duì)于,都有,

試題詳情

   則稱的最大(。┲担是一個(gè)不含零的非空實(shí)數(shù)集,且m是的最大值,則(  )

試題詳情

   A.  當(dāng)時(shí),是集合的最小值;

試題詳情

   B.  當(dāng)時(shí),是集合的最大值;

試題詳情

C.  當(dāng)時(shí),是集合的最小值;

試題詳情

D.  當(dāng)時(shí),是集合的最大值;

試題詳情

12.多面體表面上三個(gè)或三個(gè)以上平面的公共點(diǎn)稱為多面體的頂點(diǎn),用一個(gè)平面截一個(gè)n棱柱,截去一個(gè)三棱錐,剩下的多面體頂點(diǎn)的數(shù)目是                 (    )

試題詳情

A.                   B. 

試題詳情

C.            D.

試題詳情

二.填空題:(本大題共4個(gè)小題,每小題4分,共16分,把答案填在題中的橫線上)

13.已知的展開式中,的導(dǎo)數(shù)相等,則            

試題詳情

14.已知函數(shù)滿足則函數(shù)的圖像在處的切線方程為                               

試題詳情

15.研究問(wèn)題:“已知關(guān)于的不等式的解集為,解關(guān)于的不等式

試題詳情

    ”,有如下解法:

試題詳情

      解:由,令,則,

試題詳情

          所以不等式的解集為

試題詳情

   參考上述解法,已知關(guān)于的不等式的解集為,則

試題詳情

   關(guān)于的不等式的解集為                    

試題詳情

16.運(yùn)用物理中矢量運(yùn)算及向量坐標(biāo)表示與運(yùn)算,我們知道:

試題詳情

(1)若兩點(diǎn)等分單位圓時(shí),有相應(yīng)關(guān)系為:

(2)四點(diǎn)等分單位圓時(shí),有相應(yīng)關(guān)系為:

試題詳情

由此可以推知三等分單位圓時(shí)的相應(yīng)關(guān)系為:                                     

試題詳情

三.解答題(本大題共6個(gè)小題,共74分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟)

17.(本小題滿分12分)

試題詳情

函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請(qǐng)選擇適當(dāng)?shù)奶骄宽樞,研究函?shù)f(x)= +的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖

 

 

 

 

試題詳情

18.(本小題滿分12分)

一個(gè)多面體的直觀圖及三視圖如圖所示(其中E、F分別是PB、AD的中點(diǎn)).

試題詳情

   (Ⅰ)求證:EF⊥平面PBC;

   (Ⅱ)求三棱錐B―AEF的體積。

試題詳情

  19.(本小題滿分12分)

試題詳情

已知函數(shù),這里;

試題詳情

(1)設(shè)處取得極值,其中,求證:;

試題詳情

(2)設(shè)點(diǎn),,求證:線段的中點(diǎn)在曲線上;

 

 

 

 

 

 

 

試題詳情

20.(本小題滿分12分)

試題詳情

一位游客瀏覽某景區(qū)甲、乙、丙三個(gè)景點(diǎn),瀏覽這三個(gè)景點(diǎn)的概率分別是0.4,0.5,0.6。而瀏覽哪個(gè)景點(diǎn)互不影響,設(shè)表示客人瀏覽景點(diǎn)數(shù)與沒能瀏覽景點(diǎn)數(shù)之差的絕對(duì)值。

試題詳情

(1)求的分布列及數(shù)學(xué)期望

試題詳情

(2)記“函數(shù)”在區(qū)間上單調(diào)遞增為“事件A”,求事件A的概率。

試題詳情

21.(本小題滿分12分)

試題詳情

設(shè)數(shù)列的各項(xiàng)都為正數(shù),且對(duì)任意,都有,其中為數(shù)列的前項(xiàng)和。

試題詳情

(1)求證:;

試題詳情

(2)求數(shù)列的通項(xiàng)公式;

試題詳情

(3)設(shè)為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立。

試題詳情

22.(本小題滿分14分)

試題詳情

以O(shè)為原點(diǎn), 所在直線為軸,建立直角坐標(biāo)系,設(shè),點(diǎn)F的坐標(biāo)為(t,0),,點(diǎn)G的坐標(biāo)為

試題詳情

(1)求關(guān)于t的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;

試題詳情

(2)設(shè)的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)G,求當(dāng)取最小值時(shí)橢圓方程。

試題詳情

(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為C,D是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。

 

 

 

 

 

 

 

試題詳情

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

D

A

B

D

B

C

B

C

D

B

1.提示:所以,故選C。

2.提示:命題P:,所以命題P是假命題,

命題Q

當(dāng)時(shí),。 ,所以以命題Q是真命題,故選D。故選A。

3.提示:,所以,故選D。

4.提示:在AB上取點(diǎn)D,使得,則點(diǎn)P只能在AD內(nèi)運(yùn)動(dòng),則,

5.提示:故選B。

6.提示:由圖(1)改為圖(2)后每次循環(huán)時(shí)的值都為1,因此運(yùn)行過(guò)程出現(xiàn)無(wú)限循環(huán),故選D

7.提示:設(shè)全班40個(gè)人的總分為S,

,故選B。

8.提示:

所以約束條件為表示的平面區(qū)域是以點(diǎn)O(0,0),,N(0,1),Q(2,3)為頂點(diǎn)的平行四邊形(包括邊界),故當(dāng)時(shí),的最大值是4,故選C。

9.提示:由

如圖

過(guò)A作于M,則

 .

故選B.

10.提示:不妨設(shè)點(diǎn)(2,0)與曲線上不同的三的點(diǎn)距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以,不能取到。故選B。

11.提示:使用特值法:取集合當(dāng)可以排除A、B;

取集合,當(dāng)可以排除C;故選D;

12.提示:n棱柱有個(gè)頂點(diǎn),被平面截去一個(gè)三棱錐后,可以分以下6種情形(圖1~6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

在圖4,圖6所示的情形,還剩個(gè)頂點(diǎn);

在圖5的情形,還剩個(gè)頂點(diǎn);

在圖2,圖3的情形,還剩個(gè)頂點(diǎn);

在圖1的情形,還剩下個(gè)頂點(diǎn).故選B.

二、填空題:

13.   

提示:由

14. 

提示:斜率 ,切點(diǎn),所以切線方程為:

15.

提示:當(dāng)時(shí),不等式無(wú)解,當(dāng)時(shí),不等式變?yōu)?sub> ,

由題意得,所以,

16.

三、解答題:

17.解:① ∵的定義域?yàn)镽;

② ∵,

 ∴為偶函數(shù);

③ ∵,  ∴是周期為的周期函數(shù);

④ 當(dāng)時(shí),= ,

∴當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí),

=,

單調(diào)遞增;又∵是周期為的偶函數(shù),∴上單調(diào)遞增,在上單調(diào)遞減();

⑤ ∵當(dāng)時(shí);

當(dāng)時(shí).∴的值域?yàn)?sub>;

 ⑥由以上性質(zhì)可得:上的圖象如圖所示:

 

 

 

 

18.解:(Ⅰ)取PC的中點(diǎn)G,連結(jié)EG,GD,則

由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。

所以四邊形FEGD為矩形,因?yàn)镚為等腰Rt△RPD斜邊PC的中點(diǎn),

所以DG⊥PC,

    • 所以DG⊥平面PBC.

      因?yàn)镈G//EF,所以EF⊥平面PBC。

      (Ⅱ) 

       

       

       

       

      19.解:(1);根據(jù)題意:的二個(gè)根;

           由于; 

           所以;

            (2)由的二個(gè)根;所以;

      所以:

            

           又

      所以:;故:線段的中點(diǎn)在曲線上;

      20.解:

      分別記“客人瀏覽甲、乙、丙景點(diǎn)”為事件。則相互獨(dú)立,且

      客人瀏覽景點(diǎn)數(shù)可能取值為0、1、2、3;相應(yīng)在客人沒有瀏覽的景點(diǎn)數(shù)的可能取值為3、2、1、0

      的分布列為

      1

      3

      p

      0.76

      0.24

      (2)

      上單調(diào)遞增,那么要上單調(diào)遞增,必須,即

       

      21.解:(1)由已知,當(dāng)時(shí),

      ,

      當(dāng)時(shí),,

      兩式相減得:

      當(dāng)時(shí),適合上式,

      (2)由(1)知

      當(dāng)時(shí),

      兩式相減得:

      ,則數(shù)列是等差數(shù)列,首項(xiàng)為1,公差為1。

      (3)

      要使得恒成立,

      恒成立,

      恒成立。

      當(dāng)為奇數(shù)時(shí),即恒成立,又的最小值為1,

      當(dāng)為偶數(shù)時(shí),即恒成立,又的最大值為,

      為整數(shù),

      ,使得對(duì)任意,都有

      22.解:(1)由題意知

      解得,故

      所以函數(shù)在區(qū)間 上單調(diào)遞增。

      (2)由

      所以點(diǎn)G的坐標(biāo)為

      函數(shù)在區(qū)間 上單調(diào)遞增。

      所以當(dāng)時(shí),取得最小值,此時(shí)點(diǎn)F、G的坐標(biāo)分別為

      由題意設(shè)橢圓方程為,由于點(diǎn)G在橢圓上,得

      解得

      所以得所求的橢圓方程為。

      (3)設(shè)C,D的坐標(biāo)分別為,則

      ,得,

      因?yàn)椋c(diǎn)C、D在橢圓上,,

      消去。又,解得

      所以實(shí)數(shù)的取值范圍是

       

       

       

       

       

       

       

       

       


      同步練習(xí)冊(cè)答案