11.已知y=f(x)在R上的單調(diào)函數(shù),且函數(shù)y=f(x+1)圖象與y=f -1(x-2)圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng).又f的值為( ) A.2005 B.2006 C.2007 D.2008 查看更多

 

題目列表(包括答案和解析)

已知定義域在R上的單調(diào)函數(shù)y=f(x),存在實(shí)數(shù)x0,使得對(duì)于任意的實(shí)數(shù)x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對(duì)任意正整數(shù)n,有an=
1
f(n)
,bn=f(
1
2n
)+1,記Tn=b1b2+b2b3+…+bnbn+1,求an與Tn;
(3)在(2)的條件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對(duì)任意不小于2的正整數(shù)n都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

已知定義域在R上的單調(diào)函數(shù)y=f(x),存在實(shí)數(shù)x0,使得對(duì)于任意的實(shí)數(shù)x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對(duì)任意正整數(shù)n,有an=
1
f(n)
,bn=f(
1
2n
)+1,記Tn=b1b2+b2b3+…+bnbn+1,求an與Tn;
(3)在(2)的條件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對(duì)任意不小于2的正整數(shù)n都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

已知定義域在R上的單調(diào)函數(shù)y=f(x),存在實(shí)數(shù)x,使得對(duì)于任意的實(shí)數(shù)x1,x2,總有f(xx1+xx2)=f(x)+f(x1)+f(x2)恒成立.
(1)求x的值;
(2)若f(x)=1,且對(duì)任意正整數(shù)n,有an=,bn=f()+1,記Tn=b1b2+b2b3+…+bnbn+1,求an與Tn
(3)在(2)的條件下,若不等式對(duì)任意不小于2的正整數(shù)n都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

已知定義域在R上的單調(diào)函數(shù)y=f(x),存在實(shí)數(shù)x0,使得對(duì)于任意的實(shí)數(shù)x1,x2,總有恒成立.

(1)求x0的值;

(2)若f(x0)=1,且對(duì)任意正整數(shù)n,有,記,求an與Tn

(3)在(2)的條件下,若不等式對(duì)任意不小于2的正整數(shù)n都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

已知y=f(x)是定義在R上的單調(diào)增函數(shù),α=
λ
1+λ
,β=
1
1+λ
(λ≠-1)
,若|f(α)-f(β)|>|f(1)-f(0)|,則λ的取值范圍為( 。
A、λ<0且λ≠-1
B、λ<-1
C、0<λ<1
D、λ>1

查看答案和解析>>


同步練習(xí)冊(cè)答案